Data Sheet

Features

- For Base Stations applications
- Usable bandwidth 35 MHz
- Low loss
- Single-ended operation
- Ceramic Surface Mount Package (SMP)
- Small Size
- Hermetic
- RoHS compliant (2002/95/EC), Pb-free Pb

Pin Configuration

Surface Mount $3.00 \times 3.00 \times 1.22 \mathrm{~mm}$
SMP-12
1.22 NOM.

Dimensions shown are nominal in millimeters All tolerances are $\pm 0.15 \mathrm{~mm}$ except overall length and width $\pm 0.10 \mathrm{~mm}$

Body: $\mathrm{Al}_{2} \mathrm{O}_{3}$ ceramic
Lid: Kovar, Ni plated
Terminations: Au plating 0.5-1.0 mm , over a $2-6 \mu \mathrm{~m}$ Ni plating

Electrical Specifications ${ }^{(1)(2)}$

Operated Temperature Range: ${ }^{(3)} \quad-30$ to $+85{ }^{\circ} \mathrm{C}$

Parameter ${ }^{(4)}$	Minimum	Typical ${ }^{(5)}$	Maximum	Unit
Center Frequency	-	1445.4		MHz
Maximum Insertion Loss $1427.9-1462.9 \mathrm{MHz}$	-	1.25	2.5	dB
Amplitude Variation $1427.9-1462.9 \mathrm{MHz}$ $1427.9-1462.9 \mathrm{MHz} \text { (Over any } 5 \mathrm{MHz} \text { range) }$	-	$\begin{aligned} & 0.4 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { dB p-p } \\ & \text { dB p-p } \end{aligned}$
$\begin{aligned} & \hline \text { VSWR } \\ & 1427.9-1462.9 \mathrm{MHz} \end{aligned}$	-	1.7	2	-
Phase Ripple $1427.9-1462.9 \mathrm{MHz}$	-	12.0	35	deg
Absolute Delay $1427.9-1462.9 \mathrm{MHz}$	-	14.0	35	ns
Group Delay Variation $1427.9-1462.9 \mathrm{MHz}$	-	11.0	30	ns p-p
$\begin{gathered} \hline \text { Relative Attenuation } \\ 60-120 \mathrm{MHz} \\ 300-500 \mathrm{MHz} \\ 1240-1280 \mathrm{MHz} \\ 1390-1407.9 \mathrm{MHz} \\ 1495.9-1521 \mathrm{MHz} \\ 1600-1710 \mathrm{MHz} \\ 2140-2180 \mathrm{MHz} \\ 3200-4000 \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ 24 \\ 24 \\ 10 \\ 20 \\ 25 \\ 37 \\ 5 \end{gathered}$	$\begin{gathered} 41.6 \\ 30.0 \\ 28.5 \\ 16.9 \\ 23.3 \\ 31.2 \\ 38.8 \\ 8.3 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ dB
Source Impedance (single-ended) ${ }^{(7)}$ Load Impedance (single-ended)	-	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \Omega \\ & \Omega \\ & \hline \end{aligned}$

Notes:

1. All target specifications are based on TriQuint test circuit shown below
2. All target specifications represent a design goal and not a guarantee until the design is finalized and a datasheet is issued
3. In production, devices will be tested at room temperature to a guardbanded specification to ensure electrical compliance over temperature
4. Electrical margin has been built into the design to account for the variations due to temperature drift and manufacturing tolerances
5. Typical values are based on average measurements at room temperature
6. Attenuation relative to Maximum Insertion Loss
7. This is the optimum impedance In order to achieve the performance shown

Test Circuit:

Actual matching values may vary due to PCB layout and parasitics
50Ω
Single-ended Input

50Ω
Single-ended Output

SEMICONDUCTOR

Typical Performance (at $+25^{\circ} \mathrm{C}$)

Wideband Response

Input Smith Chart

Passband Response

Output Smith Chart

Matching Schematics

Actual matching values may vary due to PCB layout and parasitics
50Ω
Single-ended Input

50Ω
Single-ended Output

Marking

The date code consists of: day of the current year (Julian, 3 digits), $\mathrm{Y}=$ last digit of the year and $\mathrm{M}=$ manufacturing site code

PCB Footprint

This footprint represents a recommendation only Dimensions shown are nominal in millimeters

SEMICONDUCTOR
Data Sheet

Maximum Ratings				
Parameter	Symbol	Minimum	Maximum	Unit
Operating Temperature Range	T	-30	+85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {sta }}$	-40	+85	${ }^{\circ} \mathrm{C}$
Input Power ${ }^{(1)}$	$\mathrm{P}_{\text {in }}$	-	+22	dBm

Note:

1. Input Power is targeted for an applied CW modulated RF signal at $55^{\circ} \mathrm{C}$ for 125 hours

Important Notes

Warnings

- Electrostatic Sensitive Device (ESD)
- Avoid ultrasonic exposure

RoHS Compliance

- This product complies with EU directive 2002/95/EC (RoHS)

Solderability

- Compatible with JEDEC J-STD-020C Pb-free process, $260^{\circ} \mathrm{C}$ peak reflow temperature

Links to Additional Technical Information

PCB Layout Tips
Qualification Flowchart
Soldering Profile
S-Parameters
RoHS Information
Other Technical Information

TriQuint's liability is limited only to the Surface Acoustic Wave (SAW) component(s) described in this data sheet. TriQuint does not accept any liability for applications, processes, circuits or assemblies, which are implemented using any TriQuint component described in this data sheet.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Signal Conditioning category:
Click to view products by Qorvo manufacturer:

Other Similar products are found below :
MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50T3 DS-323-PIN B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057 FM-104-PIN CER0813B MAPDCC0005 3A325 4028741180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C 1E13053 1F1304-3S 1G1304-30 B0922J7575AHF 2020-6622-20 10017-3 TP-103-PIN BD1222J50200AHF

