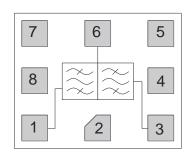


Applications

- For Band 13 LTE applications
- LTE B13, data cards, mobile routers



CSP-10KT, 2.5 x 2.00 x 0.56 mm

Functional Block Diagram

Product Features

- High Rejection in Band 14
- Usable bandwidth 10 MHz
- High Uplink-Downlink Isolation
- Low loss (or High attenuation)
- Single-ended Downlink and Uplink operation
- Ceramic chip-scale Hermetic Package (CSP)
- Small Size: 2.5 x 2.00 x 0.56 mm
- Hermetic RoHS compliant, Pb-free

General Description

The 857181 is a high-performance Temperature Compensated Surface Acoustic Wave (TC SAW) duplexer designed to meet the strict LTE requirements for use in Band 13.

857181 is specifically designed to meet the high performance expectations of insertion loss, isolation and BC14 rejection in LTE systems operating in B13 applications under all operating condition.

The 857181 uses common packaging techniques to achieve the industry standard 2.5 x 2.0 mm footprint. The duplexer exhibits excellent power handling capabilities.

Pin Configuration - Single Ended

Pin No.	Label
1	Downlink
3	Uplink
6	Ant/Phase Inductor
2,4,5,7,8,,9	Ground

Ordering Information			
Part No.	Description		
857181	Packaged Part		
857181-EVB Evaluation board description			
Standard T/P size	– 10.000 units/reel		

Standard T/R size = 10,000 units/reel

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature ⁽¹⁾	-40 to +90°C
Operable Temperature ⁽²⁾	-40 to +90°C
RF Input Power ⁽³⁾	+29 dBm

- 1. Operation of this device outside the parameter ranges given may cause permanent damage.
- 2. Specifications are not guaranteed over all operable conditions.
- 3. Input Power at Downlink Pin 1 with applied CW signal at +95°C for 10K hours in the 746-756 MHz frequency band.

Uplink Electrical Specifications ⁽¹⁾

Specified Ter	mperature Range	⁽²⁾ =	-30 to	+90°C

Parameter ⁽³⁾	Conditions	Min	Тур ⁽⁴⁾	Max	Units
Center Frequency		-	782	-	MHz
Maximum Insertion Loss	777 –787 MHz	-	1.9	2.5	dB
Amplitude Variation (5)	777 – 787 MHz over any 5 MHz	-	0.64	1.2	dB p-p
Absolute Attenuation ⁽⁶⁾	10 - 716 MHz 716 - 728 MHz 728 - 746 MHz 746 - 756 MHz 758 - 767 MHz 767 - 768 MHz 768 - 769 MHz 769 - 770 MHz 869 - 894 MHz 1554 - 1565 MHz 1565 - 1585 MHz 1597 - 1607 MHz 1805 - 1880 MHz 1930 - 1990 MHz 2110 - 2170 MHz 2331 - 2361 MHz 2400 - 2484 MHz	32 36 35 47 37 30 15 2 35 41 40 40 40 40 40 38 38	37.7 40.8 43.6 56.2 46.9 45.2 42.7 32.1 38.5 47.2 47.5 48.5 51.7 50.5 48.8 55.4 53.1		dB dB dB dB dB dB dB dB dB dB dB dB dB d
Uplink Return Loss	3108 – 3148 MHz 777 –787 MHz	35 10	47.2 19.8	-	dB dB
Antenna Return Loss	777 –787 MHz	10	16.0	_	dB
Uplink Impedance ⁽⁷⁾	Single ended	-	50	-	Ω
Antenna Impedance ⁽⁷⁾	Single ended	-	50	-	Ω

Notes:

1. All Specifications are based on the TriQuint schematic for the main reference design shown on page 4

2. In production devices will be tested at room temperature to a guardbanded specification to ensure electrical compliance over temp.

3. Electrical margin has been built into the design to account for the variations due to temperature drift and manufacturing tolerances

4. Typical values are based on average measurements at room temperature

5. Amplitude Variation is defined as the difference between the lowest loss and the highest loss within defined frequency points

6. Relative to zero dB.

7. This is the optimum impedance in order to achieve the performance shown

Downlink Electrical Specifications (1)

Specified Temperature Range $^{(2)}$ = -30 to +90°C

Parameter ⁽³⁾	Conditions	Min	Typ ⁽⁴⁾	Max	Units
Center Frequency		-	751	-	MHz
Maximum Insertion Loss	746 – 756 MHz	-	1.8	2.5	dB
Amplitude Variation ⁽⁵⁾	746 – 756 MHz	-	0.52	1.1	dB p-p
	650 – 729 MHz	27	32.1	-	dB
	729 – 736 MHz	5	22.7	-	dB
	777 – 787 MHz	47	51.8	-	dB
Absolute Attenuation ⁽⁶⁾	793 – 805 MHz	33	37.2	-	dB
	805 – 3200 MHz	16	20	-	dB
	3200 – 4200 MHz	18	19.2	-	dB
	4200 – 6000 MHz	10	12.5	-	dB
IMR2 ^{(7) (a) (b)}		-	TBD	-	dBm
IMR3 ^{(7) (c) (d)}		-	TBD	-	dBm
Downlink Return Loss	746 – 756 MHz	8.5	14.3	-	dB
Antenna Return Loss	746 – 756 MHz	10	14.8	-	dB
Downlink Impedance (single- ended) ⁽⁸⁾		-	50	-	Ω
Antenna Impedance (single- ended) ⁽⁸⁾		-	50	-	Ω
	Uplink-Downlink Specif	ication			
Uplink to Downlink Isolation	777 – 787 MHz	47	51.7	-	dB
	746 – 749 MHz	50	58.8	-	dB
	749 – 752 MHz	50	63.8	-	dB
	752 – 756 MHz	53	61.5	-	dB
	1552 – 1574 MHz	60	71.9	-	dB
	2328 – 2361 MHz	60	65.7	-	dB
	3104 – 3148 MHz	50	56	-	dB

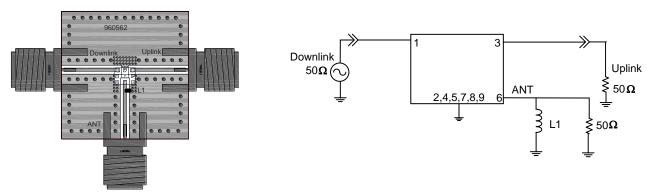
Notes:

1. All Specifications are based on the TriQuint schematic for the main reference design shown on page 4

2. In production devices will be tested at room temperature to a guardbanded specification to ensure electrical compliance over temp.

3. Electrical margin has been built into the design to account for the variations due to temperature drift and manufacturing tolerances

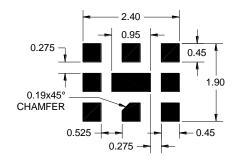
4. Typical values are based on average measurements at room temperature


5. Amplitude Variation is defined as the difference between the lowest loss and the highest loss within defined frequency points

- 6. Relative to zero dB.
- 7. All Power levels are referenced to the antenna port. Two CW tones are applied at frequencies f1 and f2, and the resultant intermodulation product in the Downlink band is measured. The first tone is applied to the Uplink port, in the range f1 = 777 to 787 MHz, at+21.5 dBm (referenced to the antenna port). The second tone is -15 dBm, applied to the antenna port at f2, with the following four cases: a. (f2 = 31 MHz); b. (f2 = 2 * f1 31 MHz); c. (f2 = f1 + 31 MHz); d. (f2 = 3 * f1 31 MHz). The intermodulation product is measured at f1 31 MHz.

8. This is the optimum impedance in order to achieve the performance shown

857181 Evaluation Board



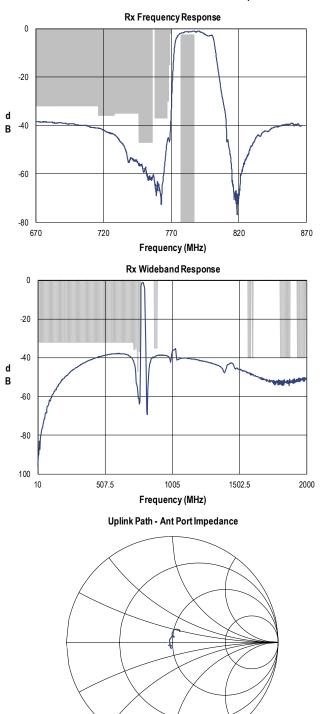
Notes:

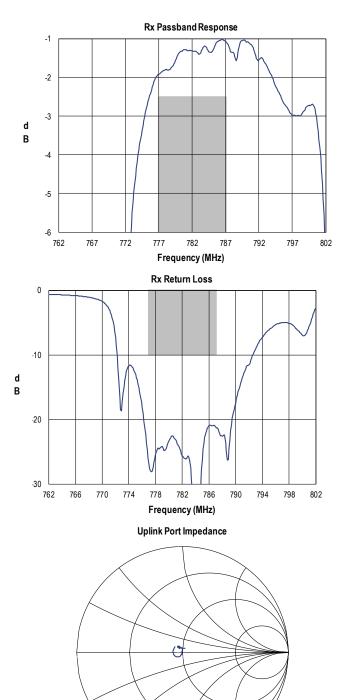
- 1. This is the optimum impedance in order to achieve the performance shown
- 2. PCB: 0.75 x 0.75 x 0.063; Construction: 1 OZ *Cu* Top, Middle and Bottom Layers; Material in between middle and top layer: *TLY-5A* (.0075); Material in between mid-bottom layers: *FR4*. (dimensions are in inches)

Reference Des.	Value	Description	Manuf.	Part Number
U1	n/a	Duplexer 751/782 MHz	TriQuint	857181
L1	15nH	0402, +/- 5%, wire wound chip ind.	Murata	LQW15AN15NJ00
SMA	N/A	SMA connector	Radiall	9602-1111-018
PCB	n/a	Printed Circuit Board	TriQuint	960562

PCB Mounting Pattern

Notes:

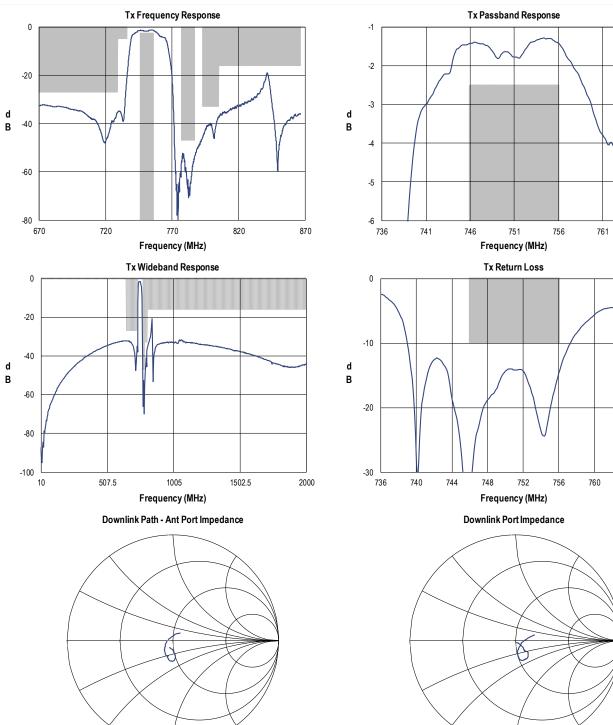

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. This drawing specifies the mounting pattern used on the TriQuint evaluation board for this product. Some modification may be necessary to suit end user assembly materials and processes.

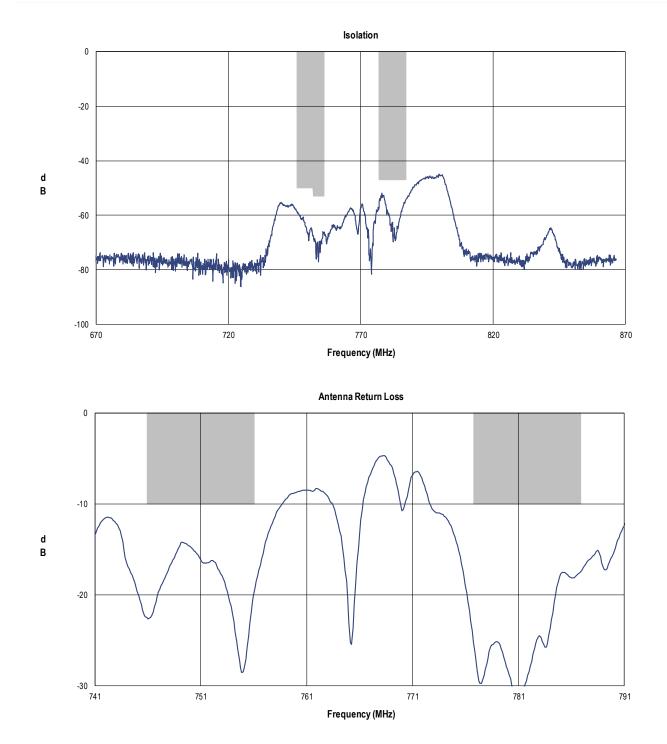


857181 782/751 MHz Duplexer

Performance Plots - 857181-EVB

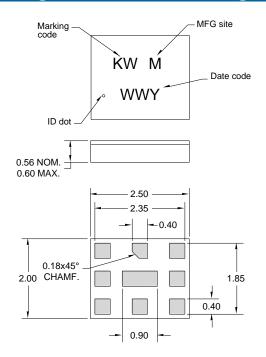
Test conditions unless otherwise noted: Temp= +25°C




857181 782/751 MHz Duplexer

766

764



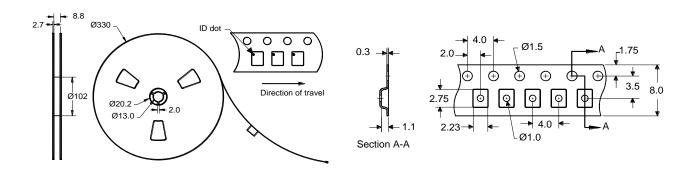
Package Information, Marking and Dimensions

Package Style: CSP-10KT Dimensions: 2.5 x 2.00 x 0.56 mm

Body: Al_2O_3 ceramic Lid: *Kovar* or Alloy42, Au over Ni plated Terminations: *Au* plating 0.5 - 1.0µm, over a 2-6µm *Ni* plating

All dimensions shown are nominal in millimeters All tolerances are ± 0.15 mm except overall length and width ± 0.10 mm

The date code consists of: WW = 2 digit week, Y = last digit of year, M = manufacturing site code


Notes:

1. All dimensions shown are typical in millimeters

2. An asterisk (*) in front of the marking code indicates prototype.

Tape and Reel information

Standard T/R size = 10,000 units/reel

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating:Class 0BValue:Passes ≥ 250 VTest:Human Body Model (HBM)Standard:JEDEC Standard JESD22-A114

MSL Rating

Not applicable. Hermetic package.

Solderability

Compatible with both lead-free (260°C maximum reflow temperature) and tin/lead (245°C maximum reflow temperature) soldering processes.

Refer to **Soldering Profile** for recommended guidelines.

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web:	www.triquint.com	Tel:	+1.407.886.8860
Email:	info-sales@tqs.com	Fax:	+1.407.886.7061

For technical questions and application information: Email: flapplication.engineering@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Signal Conditioning category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50-T3 DS-323-PIN B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057 FM-104-PIN CER0813B MAPDCC0005 3A325 40287 41180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C 1E1305-3 1F1304-3S 1G1304-30 B0922J7575AHF 2020-6622-20 10017-3 TP-103-PIN BD1222J50200AHF