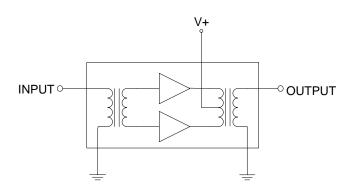
QPA3223

CATV Power Doubler Hybrid Low Current 1003 MHz

Product Overview

The QPA3223 is a Hybrid Power Doubler amplifier module. The part employs GaAs pHEMT and GaN pHEMT die, has high output capability, and is operated from 45 MHz to 1003 MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability.



SOT-115J Package

Key Features

- Low Current
- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Unconditionally Stable Under All Terminations
- 22.5 dB Min. Gain at 1003 MHz
- 410 mA Max.

Functional Block Diagram

Applications

45 to 1003 MHz CATV Amplifier Systems

Ordering Information

Part No.	Description
QPA3223	Box with 50 pcs

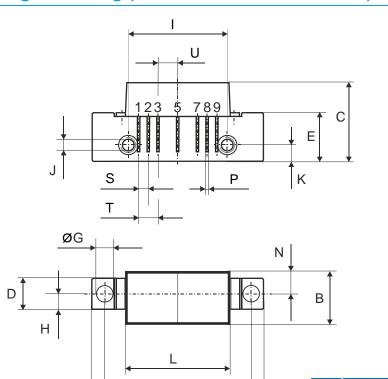
CATV Power Doubler Hybrid Low Current 1003 MHz

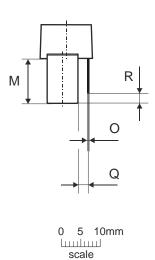
Absolute Maximum Ratings

Parameter	Value / Range		
RF Input Voltage (single tone)	75 dBmV		
DC Supply Over-Voltage (5 minutes)	+30 V		
Storage Temperature	−40 to 100 °C		
Operating Mounting Base Temperature	−30 to 100 °C		

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Electrical Specifications


Parameter	Conditions: V+ = 24 V, T_{MB} = 30 °C, Z_{S} = Z_{L} = 75 Ω	Min	Тур	Max	Unit
Operational Frequency Range		45		1003	MHz
Cain	f = 45 MHz	21.0	21.5	22.0	dB
Gain	f = 1003 MHz	22.5	23.0	24.0	dB
Gain Slope	45 to 1003 MHz ^[1]	1.0	1.5	2.5	dB
Flatness of Frequency Response	45 to 1003 MHz (Peak to Valley)			0.8	dB
	f = 45 to 320 MHz	20.0			dB
Input Datum Laga	f = 320 to 640 MHz	19.0			dB
Input Return Loss	f = 640 to 870 MHz	18.0			dB
	f = 870 to 1003 MHz	16.0			dB
	f = 45 to 320 MHz	20.0			dB
Output Batum Lass	f = 320 to 640 MHz	19.0			dB
Output Return Loss	f = 640 to 870 MHz	18.0			dB
	f = 870 to 1003 MHz	17.0			dB
Noise Figure	f = 50 to 1003 MHz		3.0	4.0	dB
Total Current Consumption (DC)			400	410	mA
СТВ	NTSC 79 ch. Analog, 50 dBmV @ 547.25 MHz, 7 dB tilt,		-70	-67	dBc
XMOD	plus 75 J.83/B QAM256 channels from 552 to 1002 MHz,		-65	-62	dBc
CSO	-6 dB offset relative to the equivalent analog carrier; (equivalent to virtually 56.4 dBmV @ 999 MHz; 13.4 dB tilt) [2]		-71	-68	dBc
CIN			62		dB


Notes:

- 1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.
- Composite Triple Beat (CTB) parameter is defined by the SCTE 06.
 Cross-modulation (XMOD) is defined by the SCTE 58, referenced to 100% modulation of the carrier being tested.
 Composite Second Order (CSO) is defined by the SCTE 06.
 Carrier to Intermodulation Noise (CIN) is defined by ANSI/SCTE 17 2007.

Package Drawing (Dimensions in millimeters)

Min

Notes:

European Projection

F

Α

Pin	Name
1	Input
2-3	GND
4	
5	V+
6	
7-8	GND
9	Output

	TTO THE TOTAL		IIICIA
Α	44,6 ^{± 0,2}	44,4	44,8
В	13,6 ^{± 0,2}	13,4	13,8
С	20,4 ^{± 0,5}	19,9	20,9
D	8 ^{± 0,15}	7,85	8,15
Е	12,6 ^{± 0,15}	12,45	12,75
F	38,1 ^{± 0,2}	37,9	38,3
G	4 +0,2 / -0,05	3,95	4,2
Н	4 ^{± 0,2}	3,8	4,2
1	25,4 ^{± 0,2}	25,2	25,6
J	UNC 6-32	-	-
K	4,2 ^{± 0,2}	4,0	4,4
L	27,2 ^{± 0,2}	27,0	27,4
М	11,6 ^{± 0,5}	11,1	12,1
N	5,8 ^{± 0,4}	5,4	6,2
0	0,25 ^{± 0,02}	0,23	0,27
Р	0,45 ^{± 0,03}	0,42	0,48
Q	2,54 ^{± 0,3}	2,24	2,84
R	2,54 ^{± 0,5}	2,04	3,04
S	2,54 ^{± 0,25}	2,29	2,79
Т	5,08 ^{± 0,25}	4,83	5,33
U	5,08 ^{± 0,25}	4,83	5,33

Nominal

QPA3223 CATV Power Doubler Hybrid Low Current 1003 MHz

Handling Precautions

Parameter	Rating	Standard
ESD – Human Body Model (HBM)	1C	ANSI/ESDA/JEDEC JS-001
ESD - Charged Device Model (CDM)	C3	ANSI/ESDA/JEDEC JS-002

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2016 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310