

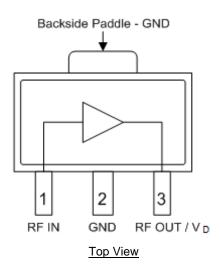
DC-4500 MHz Cascadable SiGe HBT Amplifier

General Description

The QPA5389A is a high performance SiGe HBT MMIC Amplifier. The QPA5389A uses a Darlington configuration which provides flat gain and good linearity over a wide frequency range. The QPA5389A has excellent thermal performance.

The QPA5389A is internally matched to 50 Ω at input and output requiring only two DC-blocking capacitors, a resistor, and an optional RF choke for operation. The QPA5389A operates from a single supply and has stable bias current. The QPA5389A is cascadable with other amplifiers.

3 Lead SOT-89 Package


Product Features

- High Gain: 15.9 dB at 1950 MHz
- Cascadable 50 Ω
- · Operates from Single Supply
- · Low Thermal Resistance Package

Applications

- Instrumentation
- Repeaters
- Boosters
- PA Driver Amplifier
- · Cellular, PCS, GSM, UMTS
- IF Amplifier
- · Wireless Data, Satellite

Functional Block Diagram

Ordering Information

Part No.	Description
QPA5389ATR13	3000 pieces on a 13" reel (standard)
QPA5389APCK401	850 MHz, +8 V EVB with 5 Piece Sample Bag

DC-4500 MHz Cascadable SiGe HBT Amplifier

Absolute Maximum Ratings

Parameter	Rating
Storage Temp	−55 to +150 °C
Device Voltage (V _D)	+5 V
Device Current (I _D)	120 mA
RF Input Power	+16 dBm

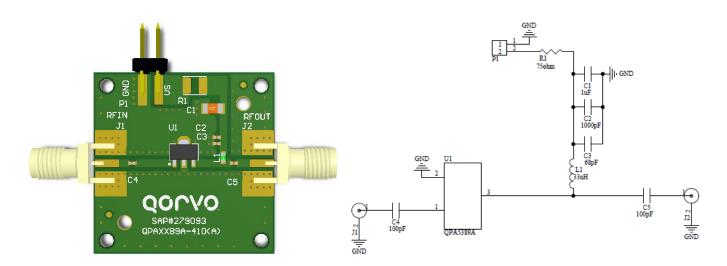
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Case Temperature (T _C)	-40		+105	°C
Junction Temperature (T _J)			+125	°C
Device Voltage (V _D)	+2.75	+3.5	+4.75	V

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications


Parameter	Conditions (1)	Min	Тур	Max	Units
	850 MHz	13.8	16.5		dB
Small Signal Gain	1950 MHz	13.3	15.9		dB
	2400 MHz		15.6		dB
Output Dawar at 1dD Compression	850 MHz		+17.1		dBm
Output Power at 1dB Compression	1950 MHz	+12.5	+16.3		dBm
Output Third Intercent Daint (2)	850 MHz		+33.3		dBm
Output Third Intercept Point (2)	1950 MHz	+26.0	+30.0		dBm
Input Return Loss	1950 MHz		22.4		dB
Output Return Loss	1950 MHz		14.5		dB
Noise Figure	1950 MHz		3.7	5.7	dB
Device Operating Current			60	70	mA
Thermal Resistance, θjc			40		°C/W

Notes:

- 1. Test conditions unless otherwise noted: $V_S = +8 \text{ V}$, $I_D = 60 \text{ mA}$ Typ., $R1 = 75 \Omega$, 50Ω system, Temp = +25 °C
- 2. OIP3 Tone Spacing=1 MHz, P_{OUT} per tone = 0 dBm,

Evaluation Board and Schematic - 850 MHz Application Circuit

Bill of Material - 850 MHz Application Circuit

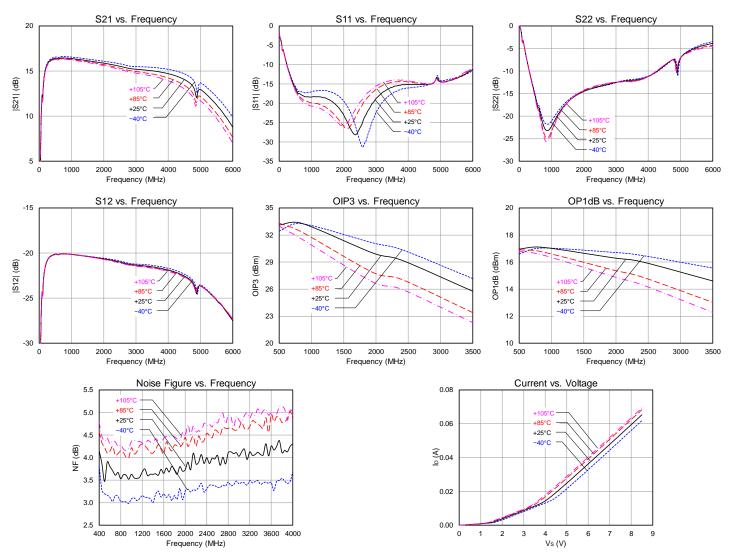
Reference	Value	Description	Manufacturer	Part Number
-	-	PCB, QPA5389A	Qorvo	QPAXX89A-410(A)
C1	1 μF	CAP, 1 μF, 10%, 25V, X7R, 1206	Murata Electronics	GRM31MR71E105KA01L
C2	1000 pF	CAP, 1000 pF, 10%, 50V, X7R, 0402	Murata Electronics	GRM155R71H102KA01D
C3	68 pF	CAP, 68 pF, 5%, 50V, C0G, 0402	Murata Electronics	GRM1555C1H680JA01D
C4, C5	100 pF	CAP, 100 pF, 5%, 50V, C0G, 0402	Murata Electronics	GRM1555C1H101JA01D
R1	75 Ω	RES, 75 Ω, 5%, 1/2W, 1210	Panasonic Industrial Co	ERJ-14NF1400U
L1	33 nH	IND, 33 nH, 5%, M/L, 0603	Murata Electronics	LL1608-FSL33NJ
J1,J2	-	CONN, SMA, EL, FLT, 0.068" SPE-000318	Amphenol RF Asia Corp	901-10426
U1	-	HBT MMIC Amplifier	Qorvo	QPA5389A
J3, J4	-	CONN, HDR, ST, 1x2, 0.100", Hi-temp, T/H	Samtec Inc	HTSW-102-07-G-S

Component Values for Specific Frequencies

Frequency	500 MHz	850 MHz	1950 MHz	2400 MHz	3500 MHz
C4, C5	220 pF	100 pF	68 pF	56 pF	39 pF
C3	100 pF	68 pF	22 pF	22 pF	15 pF
L1	68 nH	33 nH	22 nH	18 nH	15 nH

Recommended Bias Resistor Values for Various Supply Voltages

Vsupply	+6 V	+8 V	+10 V	+12 V
R1	43 Ω	75 Ω	110Ω	150 Ω

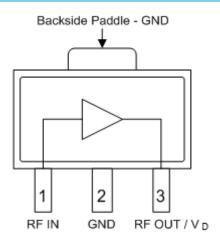

Typical Performance - 850 MHz Application Circuit

Parameter		Typical Value				
Frequency	500	850	1950	2400	3500	MHz
Small Signal Gain	16.4	16.5	15.9	15.6	15.1	dB
Output Third Intercept Point	+33.1	+33.3	+30.0	+29.2	+25.8	dBm
Output Power at 1dB Compression	+17.0	+17.1	+16.3	+16.0	+14.6	dBm
Input Return Loss	16.7	18.3	22.4	28.0	15.9	dB
Output Return Loss	16.1	23.1	14.5	13.2	12.1	dB
Reverse Isolation	20.1	20.1	20.7	21.0	21.5	dB
Noise Figure	3.5	3.6	3.7	4.0	4.3	dB

Notes:

Performance Plots – 850 MHz Application Circuit

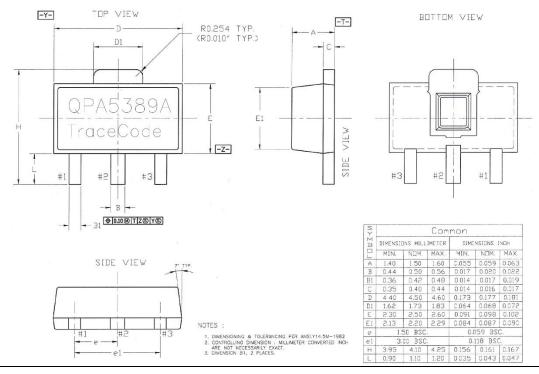
Test conditions unless otherwise noted: $V_S = +8.0 \text{ V}$, R1 = 75 Ω , $I_D = 60 \text{ mA}$, Temp.= +25 °C



^{1.} Test conditions: $V_S = +8 \, \text{V}$, $I_D = 60 \, \text{mA}$ Typ., OIP3 Tone Spacing=1 MHz, P_{OUT} per tone = $0 \, \text{dBm}$, $R1 = 75 \, \Omega$, $50 \, \Omega$ system, Temp = $+25 \, ^{\circ}\text{C}$

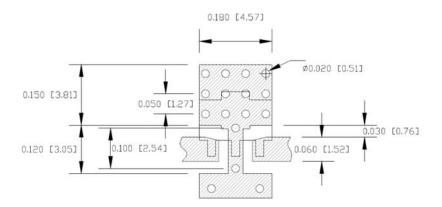
Pin Configuration and Description

Top View


Pad No.	Label	Description
1	RF IN	RF Input Pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
2, Backside Paddle	GND	Connection to ground. Use via holes in PCB for best performance to reduce lead inductance as close to ground leads as possible
3	RF OUT/V _D	RF Output and Bias Pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.

Package Marking and Dimensions

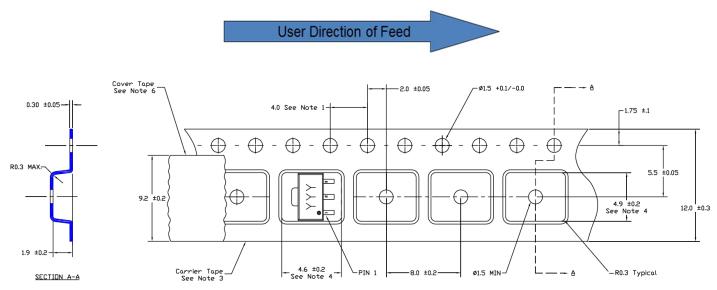
Marking: Part Number – QPA5389A


Trace Code - Assigned by sub-contractor

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

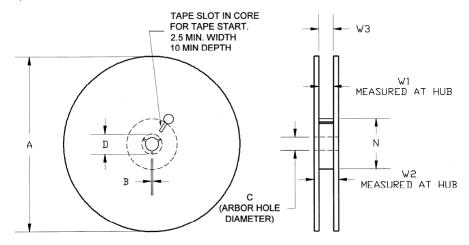
PCB Mounting Pattern



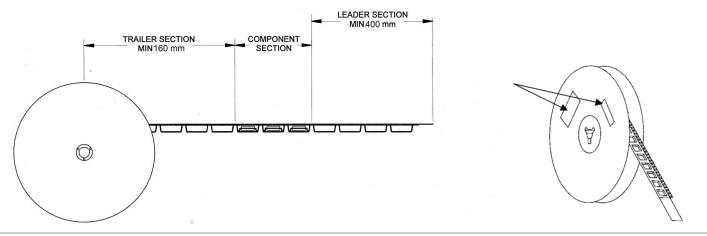
Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Via holes are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.01").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

Tape and Reel Information – Carrier and Cover Tape Dimensions


- 1. 10 sprocket hole pitch cumulative tolerance
 2. Camber not to exceed Imm in 100mm
 3. Material: Black Conductive Polystyrene
 4. Measured on a plane 0.3mm above the bottom of the pocket.
 5. Measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
 6. Material: Antistatic Polyester Film

Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.181	4.60
Covity	Width	B0	0.193	4.90
Cavity	Depth	K0	0.075	1.90
	Pitch	P1	0.315	8.00
Contarlina Diatanaa	Cavity to Perforation - Length Direction	P2	0.079	2.00
Centerline Distance	Cavity to Perforation - Width Direction	F	0.217	5.50
Cover Tape	Width (Reference only)	С	0.362	9.20
Carrier Tape	Width	W	0.472	12.0


Tape and Reel Information – Reel Dimensions

Standard T/R size = 3,000 pieces on a 13" reel.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Diameter	Α	12.992	330.0
Flange	Thickness	W2	0.717	18.2
	Space Between Flange	W1	0.504	12.8
	Outer Diameter	N	4.016	102.0
Hub	Arbor Hole Diameter	С	0.512	13.0
nub	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.787	20.0

Tape and Reel Information – Tape Length and Label Placement

Notes

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Handling Precautions

Parameter	Rating	Standard
ESD-Human Body Model (HBM)	Class 1C	ESDA/JEDEC JS-001-2014
ESD - Charged Device Model (CDM)	Class C3	ESDA / JEDEC JS-002-2014
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020

Caution! ESD-Sensitive Device

Solderability

Compatible with lead-free (260°C max. reflow temp.) soldering process.

Solder profiles available upon request.

Contact plating: Nickel Palladium Gold (NiPdAu)

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2021 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V