QPA9421 High Linearity 0.5 W Small Cell PA

Product Overview

The QPA9421 is a high-linearity two-stage power amplifier in a low-cost surface-mount package with on-chip bias control and temperature control circuits, suitable for small cell base station applications.

The QPA9421 provides 30 dB gain and +27 dBm linear power over the 2.11-2.17 GHz frequency range. This amplifier is able to achieve -50 dBc ACLR at +27 dBm output power using 20 MHz LTE signal.

The QPA9421 integrates two high performance amplifier stages onto a module to allow for a compact system design and requires very few external components for operation. The amplifier is bias adjustable allowing the amplifier's power consumption to be optimized. The QPA9421 is available in a 7×7 mm surface mount package.

7 mm x 7 mm Leadless SMT Package

Key Features

- 2.11-2.17 GHz Frequency Range
- Fully integrated, 2 Stage Power Amplifier
- Internally Matched 50 Ω Input/Output
- -50 dBc ACLR at Pavg = +27 dBm
- 30 dB Gain
- 14% PAE at +27 dBm
- 420 mA Quiescent Current
- On-chip Control Bias and Temp. Comp Circuit

GND Vref 1 14 GND GND 13 2 GND RF out 12 3 VCC1 VCC2 4 11 RF in GND 10 5 GND GND 6 9 Backside Paddle **RF/DC GND** NC GND 7 8 **Top View**

Applications

- Small Cell / Picocell
- Enterprise Femtocell
- Customer Premises Equipment (CPE)
- Data Cards and Terminals
- Distributed Antenna Systems (DAS)
- Booster Amps, Repeaters

Ordering Information

Part No.	Description
QPA9421TR13	2500 pieces on a 13" reel
QPA9421EVB-01	2.11 – 2.17 GHz Evaluation board

Functional Block Diagram

QPA9421 High Linearity 0.5 W Small Cell PA

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−55 to +150 °C
Supply Voltage (Vcc)	+6 V
Vref	+3.5 V
RF Input Power, CW, 50Ω, T=25°C	+13 dBm
Tj at T _{CASE} = 125°C	+205°C

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

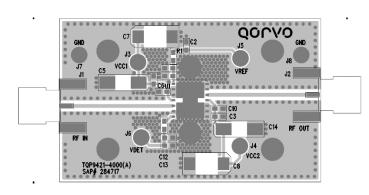
Parameter	Min	Тур	Max	Units
V _{CC1} , V _{cc2}	+3.6	+4.5	+5.25	V
V _{ref}	+2.75	+2.85	+2.95	V
TCASE	-40		+85	°C
Tj at T _{CASE} max			+165	°C

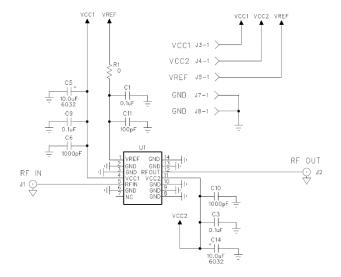
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Test conditions unless otherwise noted: $V_{CC1} = V_{CC2} = +4.5 \text{ V}$, Vref = +2.85 V, Temp= +25 °C

Parameter	Conditions	Min	Тур	Max	Units
Operational Frequency Range		2110		2170	MHz
Test Frequency			2140		MHz
Gain		27	29.6	33	dB
Input Return Loss	CW, Small Signal	15	21		dB
Output Return Loss		15	25		dB
P1dB	CW		+35.5		dBm
	Pout +27 dBm, 20 MHz LTE E-TM1.1, 9.5 dB PAR		-50	-47	dBc
	Pout +27 dBm, 20 MHz x 2 LTE E-TM1.1, 9.5dB PAR		-46		dBc
ACLR	POUT +27 dBm, 15 MHz LTE E-TM1.1, 9.5dB PAR		-50		dBc
	POUT +27 dBm, 10 MHz LTE E-TM1.1, 9.5dB PAR		-49		dBc
	POUT +27 dBm, 5 MHz LTE E-TM1.1, 9.5dB PAR		-49		dBc
Power Added Efficiency	P _{OUT} +27 dBm, 20 MHz LTE E-TM1.1, 9.5 dB PAR	13	14		%
Quiescent Current, Icq1	Vcc1 + Vcc2	330	420	510	mA
Leakage Current on Vcc	Vcc +4.5V, V _{ref} 0V		3	10	μA
Reference Current , I_{ref}	Temp -40°C to +85°C, V _{ref} = +2.85V		13	19.5	mA
Operational Current, I _{CC}	P _{OUT} +27 dBm, 20 MHz LTE E-TM1.1, 9.5 dB PAR		680	920	mA
Wake Up Time	50% of control signal to 90% of the RF output		715		ns
Power Down Time	50% of control signal to 10% of the RF output		1370		ns
Spurious Output Level	$P_{OUT} \le +27$ dBm, In & Out of band load VSWR $\le 10:1$		-60		dBc
VSWR survivability	No permanent degradation or failure	10:1			-
	2F ₀ (Pout +27 dBm), CW signal		-39	-33	dBc
Harmonics	3F₀ (Pout +27 dBm), CW signal		-48	-37	dBc
	4F ₀ (P _{OUT} +27 dBm), CW signal		-64	-37	dBc
Thermal Resistance, θ _{jc}	Module (junction to case)			18.5	°C/W


Notes:


1. Vcc1 draws very little current and provides the bias voltage to the current mirror circuit along with Vref to set the bias point for the whole amplifier.

2. Control signal applied to Vref Pin, 0 to 2.85V

QPA9421 High Linearity 0.5 W Small Cell PA

QPA9421 Application Circuit Schematic and Layout

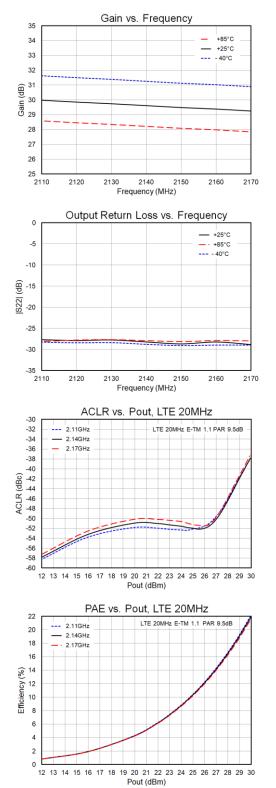
Bill of Material - QPA9421EVB-01

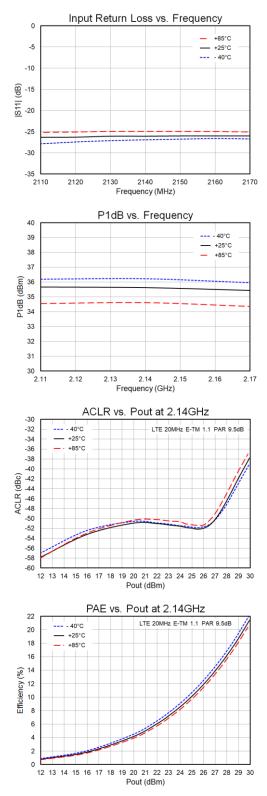
Ref Designation Value D		Description	Manufacture	Part Number
-	-	Printed Circuit Board	Qorvo	
U1	-	Amplifier, High Linearity 0.5 W Power Qorvo 0		QPA9421
R1	0 Ω	Resistor, Chip, 0603, 5%	various	
C1	0.01 µF	Capacitor, Chip, 0603, 5%	various	
C11	100 pF	Capacitor, Chip, 0603, 5%	various	
C3, C9	0.1 µF	Capacitor, Chip, 0603, 5%	various	
C5, C14	10 µF	Capacitor, Chip, 6032, 10%, Tantalum	various	
C6, C10	1000 pF	Capacitor, Chip, 0603, 5%, NPO/C0G	various	

QPA9421EVB-01 Typical Performances

Test conditions unless otherwise noted: V _{CC1} = V _{CC2} = +4.5 V, Vref = +2.85 V, Pout 27dBm, 2140MHz, Signal PAR 9.5dB, Temp= +25 °C							
LTE Signal BW	5MHz	10MHz	15MHz	20MHz	20MHz x 2	Units	
ACLR1-Low	-49.9	-49.3	-50.2	-50.0	-46.5	dBc	
ACLR1-high	-49.9	-50.3	-50.5	-50.7	-48.1	dBc	

Parameter	Conditions	-40°C	+25°C	+85°C	Units
Gain		30.9	29.0	27.6	dB
ACLR	Pout = +27 dBm, 20 MHz LTE E-TM1.1, 9.5dB PAR	-50.3	-50.0	-49.2	dBc
PAE		14.5	14.1	13.3	%
P1dB	CW	+35.8	+35.5	+34.3	dBm

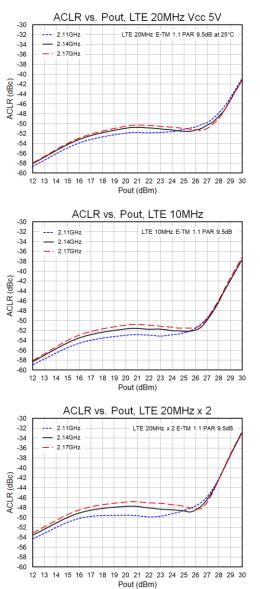

Test Frequency = 2140MHz

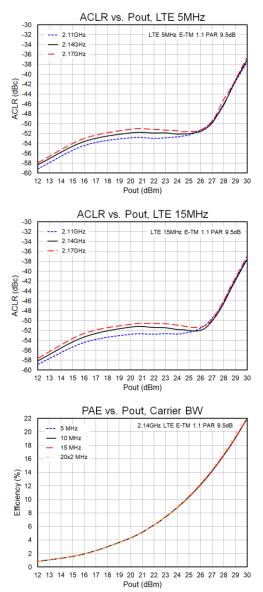


QPA9421 High Linearity 0.5 W Small Cell PA

Performance Plots

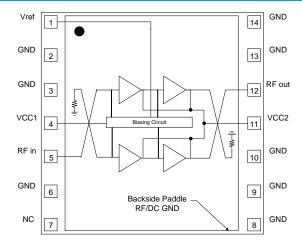
Test conditions unless otherwise noted: V_{CC1} = V_{CC2} = +4.5V, Vref = +2.85 V, LTE signal PAR = 9.5dB, Temp.= +25 °C

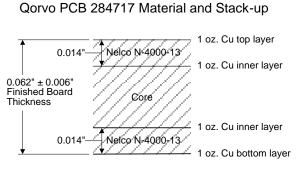


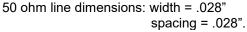


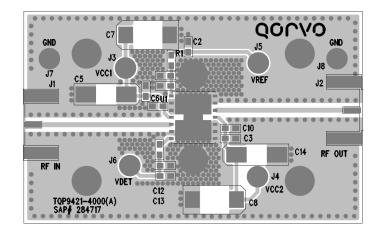
QPA9421 High Linearity 0.5 W Small Cell PA

Performance Plots (continue)


Test conditions unless otherwise noted: V_{CC1} = V_{CC2} = +4.5V, Vref = +2.85V, LTE signal PAR = 9.5dB, Temp.= +25 °C

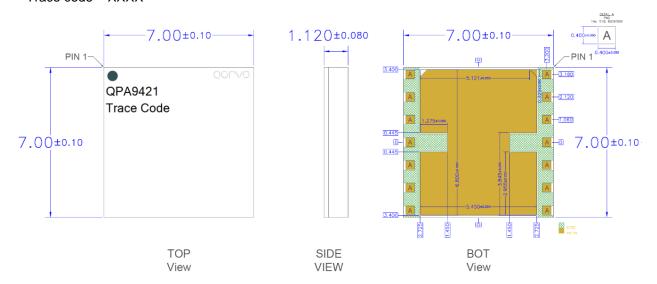

QPA9421 High Linearity 0.5 W Small Cell PA


Pin Configuration and Description



Pin No.	Label	Description
1	Vref	Provides reference voltage for internal active biasing circuit
2, 3, 6, 8, 9, 10, 13, 14	GND	RF and DC ground.
4	VCC1	Bias voltage for current mirror in combination with Vref to set the bias point.
5	RFin	RF input pin. The DC is internally blocked at this pin.
7	NC	No internal connection. Can be left open or grounded for mounting integrity.
11	VCC2	Supply to all stages.
12	RFout	RF output pin. The DC is internally blocked at this pin.
Backside Paddle	RF/DC GND	RF/DC ground. See PCB Mounting Pattern for suggested footprint.

Evaluation Board PCB Information

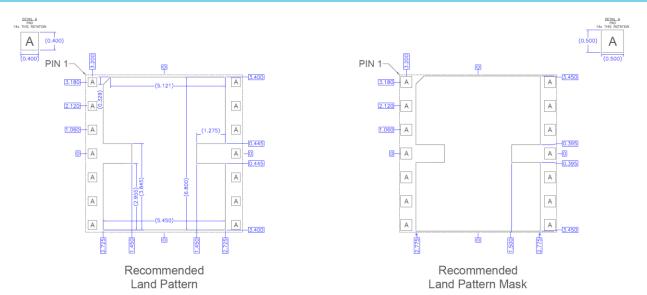


QPA9421 High Linearity 0.5 W Small Cell PA

Mechanical Information

Package Marking and Dimensions

Marking: Part number – QPA9421 Trace code – XXXX

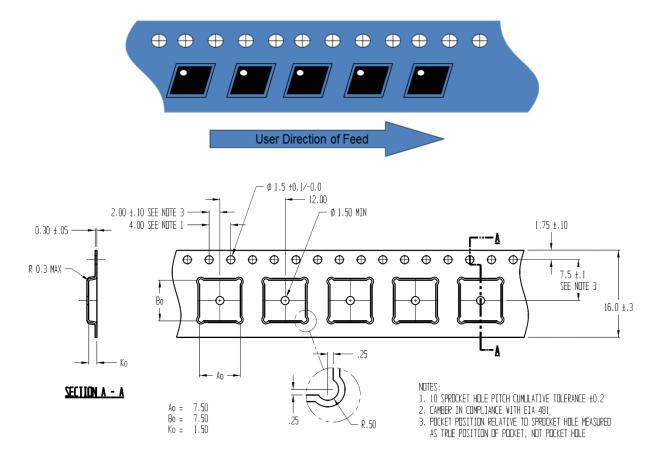


Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Dimension and tolerance formats conform to ASME Y14.4M-1994.

3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

PCB Mounting Pattern

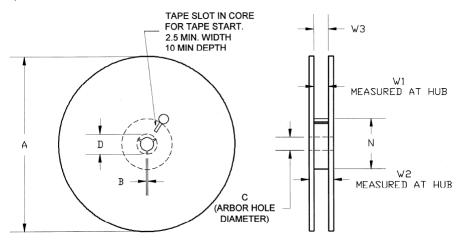


Notes:

- 1. A heat sink underneath the area of the PCB for the mounted device is strictly required for proper thermal operation. Damage to the device can occur without the use of one.
- 2. Ground / thermal via holes are critical for the proper performance of this device. Via holes should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- 3. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.

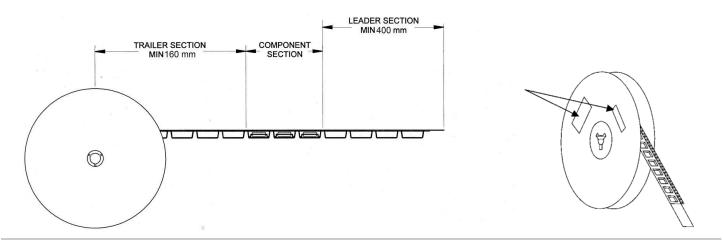
QPA9421 High Linearity 0.5 W Small Cell PA

Tape and Reel Information – Carrier and Cover Tape Dimensions



Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.295	7.50
Covity	Width	B0	0.295	7.50
Cavity	Depth	K0	0.059	1.50
	Pitch	P1	0.472	12.0
Cantarlina Distance	Cavity to Perforation - Length Direction	P2	0.079	2.00
Centerline Distance	Cavity to Perforation - Width Direction	F	0.295	7.50
Cover Tape	Width	С	0.524	13.3
Carrier Tape	Width	W	0.630	16.0

QPA9421 High Linearity 0.5 W Small Cell PA


Tape and Reel Information – Reel Dimensions (13")

Standard T/R size = 2,500 pieces on a 13" reel.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Diameter	A	12.992	330.0
Flange	Thickness	W2	0.874	22.2
	Space Between Flange	W1	0.661	16.8
	Outer Diameter	N	4.016	102.0
Hub	Arbor Hole Diameter	С	0.512	13.0
Hub	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.787	20.0

Tape and Reel Information – Tape Length and Label Placement

Notes:

1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.

2. Labels are placed on the flange opposite the sprockets in the carrier tape.

QPA9421 High Linearity 0.5 W Small Cell PA

Handling Precautions

Parameter	Rating	Standard		
ESD-Human Body Model (HBM)	Class 1A	ESDA/JEDEC JS-001-2012		Caution!
ESD-Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F	A B	ESD-Sensitive Device
MSL-Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020		

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: Electrolytic plated Au over Ni (Plating thickness: Ni 5.0±30µm, Au 0.10µm minimum)

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU. This product also has the following attributes:

- Product uses RoHS Exemption 7c-I to meet RoHS Compliance requirements.
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>

Tel: 1-844-890-8163

Email: <u>customer.support@gorvo.com</u>

For technical questions and application information:

Email: appsupport@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ MAX2371EVKIT# 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1