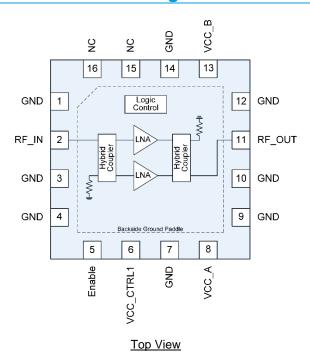


General Description

The QPA9807 is a balanced amplifier module with embedded hybrid couplers to convert to single ended input and output ports. The module has an enable pin to allow for shutting down of the amplifier. The module requires minimal external components which are VCC choke inductors, decoupling caps and resistors for bias control.

The QPA9807 provides +24.7 dBm P1dB with 19.6 dB gain and +38.7 dBm OIP3 across a wide frequency range of 2300-2700 MHz to cover the 3GPP Bands 7, 30, 38, 40, and 41. The linear driver amplifier is targeted for use in wireless infrastructure where high linearity, medium power and high integration is required. The balanced amplifier configuration provides very good input and output VSWR and is especially ideal as the output stage in a macrocell transceiver board that connects to the high power amplifier (HPA) board through a long cable or microstrip trace. The QPA9807 is packaged in a small $5 \times 5 \text{ mm}$ leadless package that is internally matched to 50Ω on all RF ports.



16 Pad 5 x 5 mm leadless SMT Package

Product Features

- 2300-2700 MHz
- Balanced Amplifier with integrated 3 dB hybrids
- Internally Matched 50 Ω Input / Output
- Shutdown Mode with 1.8V logic control
- 19.6 dB Gain
- +38.7 dBm OIP3
- +24.7 dBm P1dB
- Good gain flatness across Bands 7, 30, 38, 40, 41

Functional Block Diagram

Applications

- · Wireless Infrastructure
- Macro BTS Transceivers
- · Booster Amps, Repeaters

Ordering Information

Part No.	Description
QPA9807TR13	2,500 pieces on a 13" reel (standard)
QPA9807EVB-01	2300 - 2700 MHz Evaluation Board

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−40 to +150 °C
RF Input Power, CW, 50 Ω, T=25 °C	+22 dBm
Supply Voltage (VCC)	+6 V
Enable Voltage (Enable)	VCC_A&B + 0.5 V

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

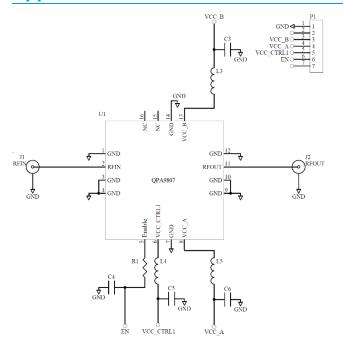
Parameter	Min	Тур	Max	Units
Device Voltage (VCC_A&B)	+3.30	+5	+5.25	V
Enable (High)	+1.17	+1.8	+3.6	V
Enable (Low)	0		+0.63	V
Tcase	-40		+105	°C
Tj for >10 ⁶ hours MTTF			+190	°C

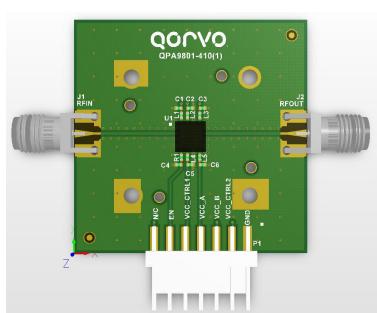
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Units
Operational Frequency Range		2300		2700	MHz
Test Frequency			2500		MHz
Gain		18.5	19.6	21.5	dB
	Fc ± 100 MHz		0.1		dB
Cain Slana (neak to neak)	Fc ± 250 MHz		0.3		dB
Gain Slope (peak to peak)	Fc ± 350 MHz		0.4		dB
	Fc ± 500 MHz		0.5		dB
Output IP3	Pout = +7 dBm/tone, ∆f = 1 MHz	+35.5	+38.7		dBm
Output P1dB		+24.0	+25.0		dBm
Noise Figure			1.4		dB
Input Return Loss			27		dB
Output Return Loss			28		dB
Control Current	Ivcc_ctrl1 (Pin 6)		3		mA
Total Current	I _{VCC_A} (Pin 8) and I _{VCC_B} (Pin 13)		286	340	mA
Enable Time	50% Enable to 90% RF		220		ns
Disable Time	50% Enable to 10% RF		60		ns
Thermal Resistance, θjc	Module (junction to backside ground paddle)		28.4		°C/W

Notes:


Logic Table

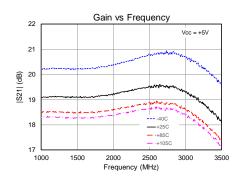

Parameter	High	Low
Enable	Active	Shutdown

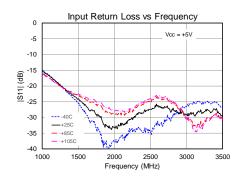
^{1.} Test conditions unless otherwise noted: VCC_A&B = VCC_CTRL1 = +5.0 V, Enable = +1.8V, Temp = +25 °C, 50 Ω system.

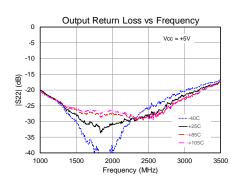
Application Circuit Schematic and Layout

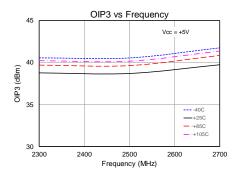
Bill of Material - QPA9807EVB-01

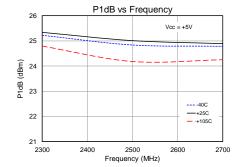
Reference Des.	Value	Description	Manuf.	Part Number
-	-	Printed Circuit Board		
U1	-	1/4 Watt Balanced Amplifier	Qorvo	QPA9807
L3, L5	18 nH	Inductor, wire wound	Coilcraft	0402CS-18NXGRW
R1, L4	0 Ω	Resistor, Chip, Jumper	Various	
C3, C6	1 μF	Capacitor, Chip, 10%, 10V, X5R	Various	
C5	100 pF	Capacitor, Chip, NPO, 5%, 50V, NPO/COG	Various	
C4	-	DNI		

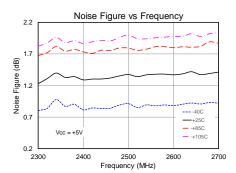

Typical Performance – VCC +5.0V


Parameter	Conditions ⁽¹⁾	Т	Typical Value Uni		Units
Frequency		2300	2500	2700	MHz
Gain		19.5	19.6	19.7	dB
	Fc ± 100 MHz	0.1	0.1	0.1	dB
Cain Clana (neak to neak)	Fc ± 250 MHz	0.3	0.3	0.2	dB
Gain Slope (peak to peak)	Fc ± 350 MHz	0.5	0.4	0.3	dB
	Fc ± 500 MHz	0.6	0.5	0.6	dB
Input Return Loss		30	27	27	dB
Output Return Loss		29	28	26	dB
Output IP3	Pout = +7 dBm/tone, Δf = 1 MHz	+38.8	+38.7	+39.7	dBm
Output P1dB		+25.3	+25.0	+24.9	dBm
Noise Figure		1.2	1.4	1.4	dB

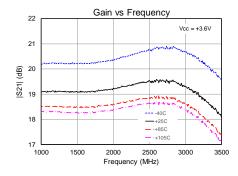

Notes:

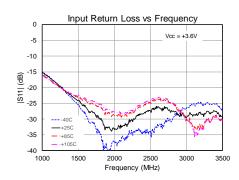

Performance Plots - VCC +5.0V

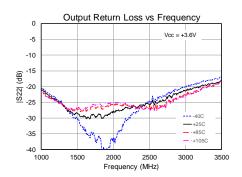

Test conditions unless otherwise noted: VCC_A&B = VCC_CTRL1 = +5V, Enable = +1.8 V, Temp.=+25 °C

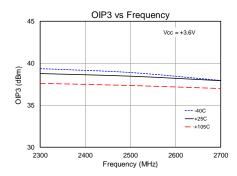


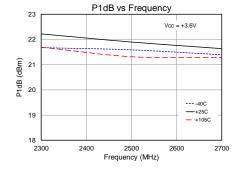
^{1.} Test conditions unless otherwise noted: VCC_A&B = VCC_CTRL1 = +5.0 V, Enable = +1.8V, Temp.=+25 °C

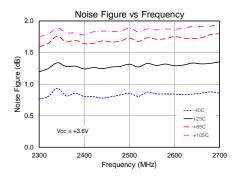

Typical Performance - VCC +3.6 V

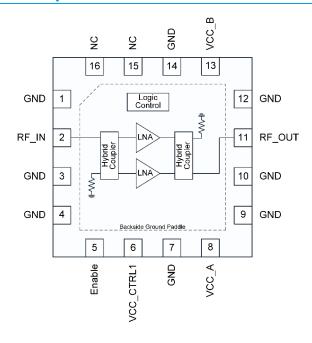

Parameter	Conditions ⁽¹⁾	T	Typical Value Units		Units
Frequency		2300	2500	2700	MHz
Gain		19.5	19.5	19.5	dB
	Fc ± 100 MHz	0.1	0.1	0.1	dB
Cain Clana (neak to neak)	Fc ± 250 MHz	0.3	0.3	0.1	dB
Gain Slope (peak to peak)	Fc ± 350 MHz	0.5	0.4	0.3	dB
	Fc ± 500 MHz	0.6	0.5	0.6	dB
Input Return Loss		30	27	26	dB
Output Return Loss		26	26	25	dB
Output IP3	Pout = +6 dBm/tone, ∆f = 1 MHz	+38.8	+38.5	+37.9	dBm
Output P1dB		+22.2	+21.9	+21.6	dBm
Noise Figure		1.2	1.2	1.3	dB


Notes:


Performance Plots - VCC +3.6 V


Test conditions unless otherwise noted: VCC_A&B = VCC_CTRL1 = +3.6V, Enable = +1.8 V, Temp.=+25 °C

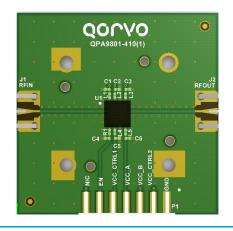




^{1.} Test conditions unless otherwise noted: VCC_A&B = VCC_CTRL1 = +3.6 V, Enable = +1.8V, Temp.=+25 °C

Pin Configuration and Description

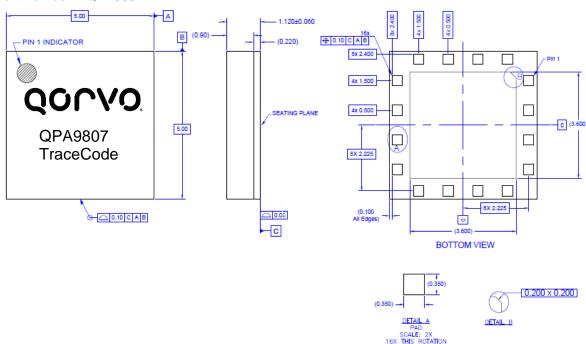
Top View


Pad No.	Label	Description
1, 3, 4, 7, 9, 10, 12, 14	GND	RF and DC Ground
2	RF_In	RF Input, 50Ω resistance presents, DC blocking capacitor requited when cascading with non-zero DC voltage external circuitry
5	Enable	Enable Input, Logic "1" – Amplifiers ON; Logic "0" – Amplifiers OFF
6	VCC_CTRL1	DC Supply Voltage Input, BIAS control
8	VCC_A	DC Supply Voltage Input, Amplifier A
11	RF_Out	RF Output, 50Ω resistance presents, DC blocking capacitor requited when cascading with non-zero DC voltage external circuitry
13	VCC_B	DC Supply Voltage Input, Amplifier B
15	NC	Not connected
16	NC	Not connected
Backside Paddle	-	RF/DC ground. See PCB Mounting Pattern for suggested footprint.

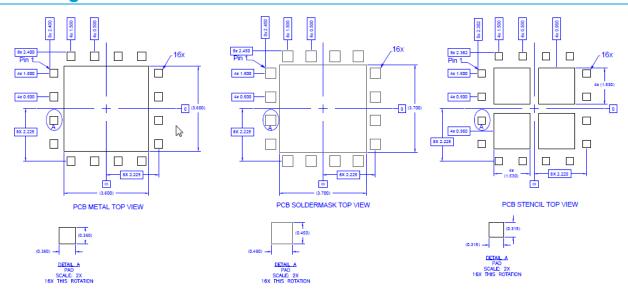
Evaluation Board PCB Information

PC Board Layout

PCB Material (stack up):


1/2 oz. Cu top layer
0.008 Inch FR-4
1 oz. Cu middle layer 1
.012 Inch FR-4
1 oz. Cu middle layer 2
0.008 Inch FR-4
1/2 oz. Cu bottom layer
Finished board thickness is 0.034±.003

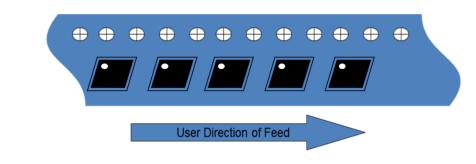
Package Marking and Dimensions

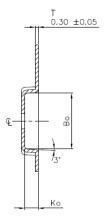

Marking: Part Number - QPA9807

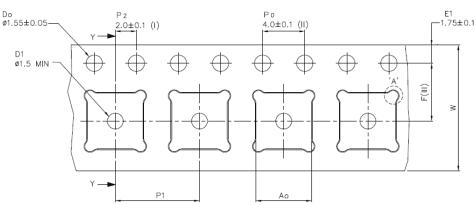
Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.
- 3. Contact plating: ENEPIG

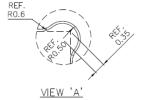
PCB Mounting Pattern




Notes:

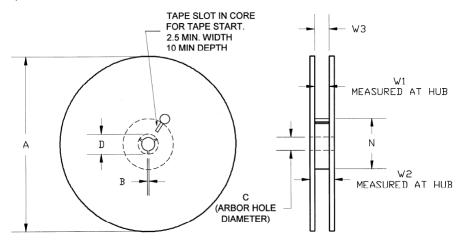

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.010").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

Tape and Reel Information – Carrier and Cover Tape Dimensions

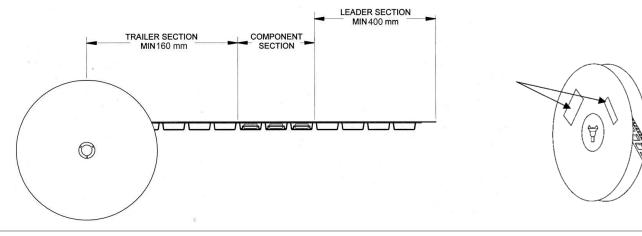


SECTION Y-Y GENERAL TOLERANCE: ±0.2

Ao	5.30	+/- 0.1
Во	5.30	+/- 0.1
Ko	1.30	+/- 0.1
F	5.50	+/- 0.1
P 1	8.00	+/- 0.1
W	12.00	+/- 0.3


- Measured from centreline of sprocket hole (I) to centreline of pocket.
- (II) Cumulative tolerance of 10 sprocket holes is \pm 0.20 .
- Measured from centreline of sprocket hole to centreline of pocket.
- Other material available.
- ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.209	5.30
Cavity	Width	В0	0.209	5.30
Cavity	Depth	K0	0.051	1.30
	Pitch	P1	0.315	8.00
Centerline Distance	Cavity to Perforation - Length Direction	P2	0.079	2.00
Centenine Distance	Cavity to Perforation - Width Direction	F	0.217	5.50
Cover Tape	Width	С	0.362	9.20
Carrier Tape	Width	W	0.472	12.00


Tape and Reel Information – Reel Dimensions

Standard T/R size = 2,500 pieces on a 13" reel.

Feature	Measure	Symbol	Size (in)	Size (mm)
Flange	Diameter	A	12.992	330.0
	Thickness	W2	0.717	18.2
	Space Between Flange	W1	0.504	12.8
Hub	Outer Diameter	N	4.016	102.0
	Arbor Hole Diameter	С	0.512	13.0
	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.787	20.0

Tape and Reel Information – Tape Length and Label Placement

Notes:

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Handling Precautions

Parameter	Rating	Standard
ESD-Human Body Model (HBM)	Class 1B	ESDA / JEDEC JS-001-2012
ESD-Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020

Caution! ESD-Sensitive Device

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes.

Solder profiles available upon request.

Contact plating: ENEPIG (Plating thickness: Ni 0.40±0.10μm; Pd 0.145±0.035μm; Au 0.095±0.025μm)

RoHS Compliance

This part is compliant with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- · Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Tel: 1-844-890-8163
Web: www.qorvo.com

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2020 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310