
QPC1022 Broad Band Low Distortion SPDT Switch

General Description

The QPC1022 is a single pole dual-throw (SPDT) switch designed for switching applications requiring very low insertion loss and high power handling capability with minimal DC power consumption. The excellent linearity performance achieved by the QPC1022 makes it ideal for use in cellular base. This switch offers very high isolation between RF ports providing greater separation between transmit and receive paths. The QPC1022 is packaged in a very compact 1.1mm x 1.5mm x 0.375mm (typical) 9-Pin LGA package.

Functional Block Diagram

9 Pin 1.1 x 1.5 mm LGA Package

Product Features

- 5MHz to 6GHz Operation
- Low Insertion Loss: 0.25dB at 2GHz
- Harmonics: 2fo of -106dBc at 1980MHz
 3fo of -94dBc at 1980MHz
- High Isolation:
 56dB at 204MHz
 39dB at 2GHz
- High IP3: 76 dBm at 1.9GHz
- Compatible with Low Voltage Logic (VHIGH Minimum = 1.3V)
- No External DC Blocking Capacitors Required on RF Paths Unless DC is Applied Externally
- 1000V HBM ESD Rating on All Ports

Applications

- Cellular BTS
- Post PA Switching
- General Purpose Switching Applications

Ordering Information

Part No.	Description
QPC1022SB	Sample Bag with 5 pieces
QPC1022SR	Sample Reel with 100 pieces
QPC1022TR7	Standard 7" Reel with 2,500 pieces
QPC1022PCK401	Fully Assembled 50 Ohm Evaluation Board and Sample Bag with 5 pieces

QPC1022 Broad Band Low Distortion SPDT Switch

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-40 to +150 °C
Operating Temperature (Tcase)	-40 to 105 °C
Maximum Vdd	6.0 V
Maximum EN	3.0 V
Maximum CTRL	3.0 V
	33 dBm : 5MHz
Max Input Power at 105 °C	37 dBm : >20MHz

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Electrical Specifications

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Device Voltage (V _{dd})	+2.4	+5	+5.8	V
TCASE	-40		+105	°C
Тј			+125	°C
RF input Power 5MHz @ 85 °C			33	dBm
RF input power >20MHz @ 85 °C			37	dBm

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Units
Operational Frequency Range		5 6000		6000	MHz
Insertion Loss RF1/RF2 to ANT	5.0MHz to 1.0GHz		0.2	0.4	dB
	1GHz to 2.0GHz		0.25	0.4	dB
	2.0GHz to 2.5GHz		0.26		dB
	2.5GHz to 3.5GHz		0.35		dB
	3.5GHz to 3.8GHz		0.38		dB
	3.8GHz to 6GHz		0.46		dB
Isolation RF1 to RF2	5.0MHz to 200MHz		56		dB
	200MHz to 1.0GHz	39	46		dB
	1.0GHz to 2.0GHz	32	39		dB
	2.0GHz to 2.5GHz		36		dB
	2.5GHz to 3.5GHz		34		dB
	3.5GHz to 3.8GHz		33		dB
	3.8GHz to 6GHz		29		dB
RF Port Return Loss (ANT, RF1, RF2)	5.0MHz to 1.0GHz		31		dB
	1GHz to 2.0GHz		23		dB
	2.0GHz to 2.5GHz		22		dB
	2.5GHz to 3.5GHz		18		dB
	3.5GHz to 3.8GHz		17.5		dB
	3.8GHz to 6GHz		14.5		dB
Harmonics 2fo	RFin = 35dBm, 915MHz		-109		dBc
	RFin = 33dBm, 1980MHz		-106	-80	dBc
Harmonics 3fo	RFin = 35dBm, 915MHz		-98		dBc
	RFin = 33dBm, 1980MHz		-94	-80	dBc

Notes:

1. Test conditions unless otherwise noted: V_{DD} = +5.0 V, Temp = +25 °C, 50 Ω system.

Electrical Specifications

Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Units
OIP2 RFx to ANT (5MHz)	Tone 1: 5MHz at 10dBm Tone 2: 4.95MHz at 10dBm		103		dBm
OIP2 RFx to ANT(450MHz)	Tone 1: 450MHz at 10dBm Tone 2: 445.5MHz at 10dBm		131		dBm
OIP2 RFx to ANT	Tone 1: 2480MHz at 10dBm Tone 2: 2690MHz at 10dBm		132		dBm
OIP3 RFX to ANT (5MHz)	Tone 1: 5MHz at 10dBm Tone 2: 4.95MHz at 10dBm Tone 3: 4.85MHz at 10dBm	10dBm 73 10dBm 73			dBm
OIP3 RFX to ANT (450MHz)	Tone 1: 450MHz at 10dBm Tone 2: 445.5MHz at 10dBm Tone 3: 436.5MHz at 10dBm	e 1: 450MHz at 10dBm e 2: 445.5MHz at 10dBm 73			dBm
OIP3 RFX to ANT(850MHz)	30MHz spacing at 20dBm/Tone		76		dBm
OIP3 RFX to ANT (1900MHz)	30MHz spacing at 20dBm/Tone		76		dBm
Supply Current Idd EN = High EN = Low			52 2	100 5	uA
Control Voltage (EN, CTRL)	VHigh Vlow	•		2.75 0.45	V
Control Current (EN, CTRL)	ol Current (EN, CTRL) Ihigh ILow		2.5 0.1	5 3	uA
Switching Speed RF ON	50% control to 90% RF ON		2.6		us
Switching Speed RF OFF	50% control to 10% RF ON		1.5		us
Startup Time from Shutdown	Maximum time for switch to reach full compliant operation	6		us	
Turn on Time	Time from Vdd 50% of operational voltage to RF signal at 90%		5	20	us

Notes:

1. Test conditions unless otherwise noted: V_{DD} = +5.0 V, Temp = +25 °C, 50 Ω system.

Thermal Information

Parameter	Conditions	Value	Units
Thermal Resistance (θ_{JC}) ⁽¹⁾	37dBm @ 2GHz, 85C Stage Temperature	156	°C/W
Channel Temperature, T _{CH} (Under RF)	37dBm@ 2GHz, 85C Stage Temperature	125	°C

Notes:

1. Thermal Resistance is referenced to back of EVB.

QOUND

QPC1022 Broad Band Low Distortion SPDT Switch

Power-Up, Power-Down sequence and operation controls

Sequence for Power UP and Power DOWN from the supply that is connected to QPC1022 VDD pin.

Power-up Sequence:

- 1) Turn on V_{DD} (supply)
- 2) Then EN
- 3) Then CTRL
- 4) Then (20µs or greater)
- 5) Apply RF signal

Power-Down Sequence:

- 1) Turn off RF signal
- 2) Then CTRL
- 3) Then EN
- 4) Turn off V_{DD} (supply)

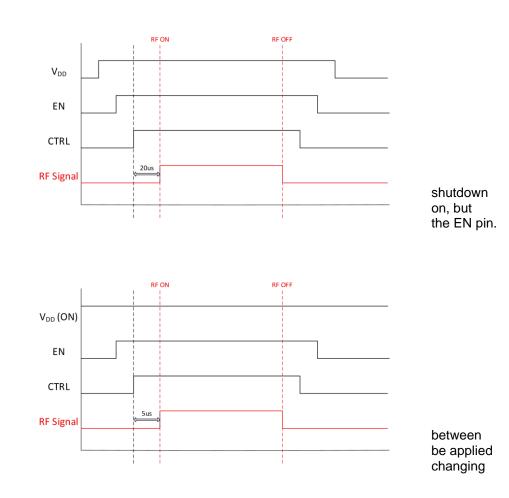
Sequence for going in and out of a mode, keeping the V_{DD} or supply disabling/enabling the QPC1022 by

Power-Up Sequence:

- 1) Turn-on EN (enable)
- 2) Then CTRL
- 3) Then (5µs or greater)
- 4) Turn-on RF signal

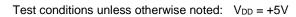
Power-Down Sequence: 1) Turn-off RF signal

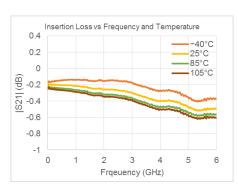
- 2) Then CTRL
- 3) Then EN (disable)

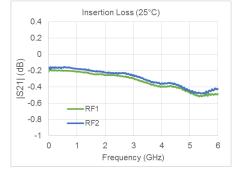

When changing switch positions RF1 and RF2, no RF signal should to any RF port while the CTRL is states.

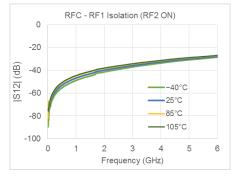
Switching Ports:

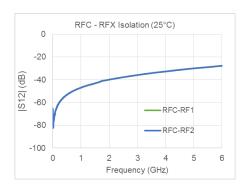
- 1) Turn-off RF signal
- 2) Then change CTRL state
- 3) Then (5µs or greater)
- 4) Turn-on RF signal

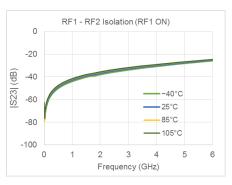

Control Logic for Valid Operational States

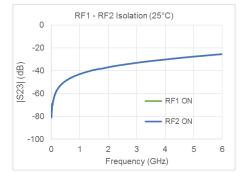

State	V _{DD}	CTRL	EN	RF Path
1	2.4V to 5.8V	V _{HIGH}	V _{HIGH}	ANT-RF1
2	2.4V to 5.8V	V _{LOW}	V _{HIGH}	ANT-RF2
Shutdown	2.4V to 5.8V	Х	VLOW	Shutdown

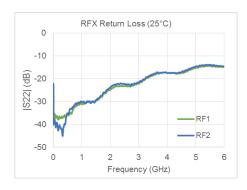


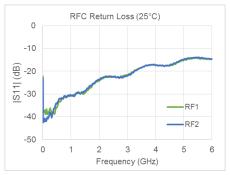

QPC1022 Broad Band Low Distortion SPDT Switch

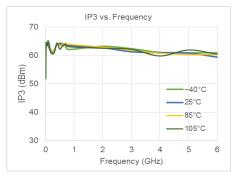

Performance Plots – 50 Ω

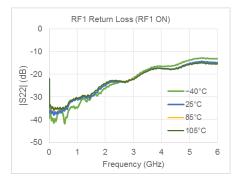


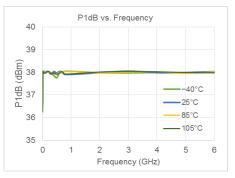


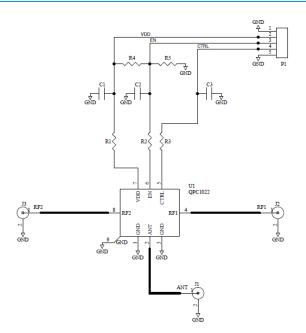


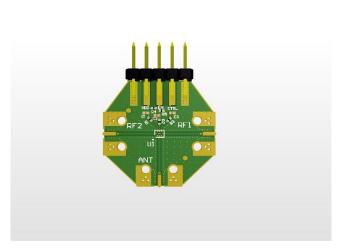






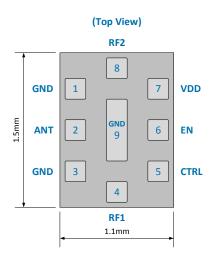






QPC1022 Broad Band Low Distortion SPDT Switch

Evaluation Board Schematic & Layout for 50 Ω Application

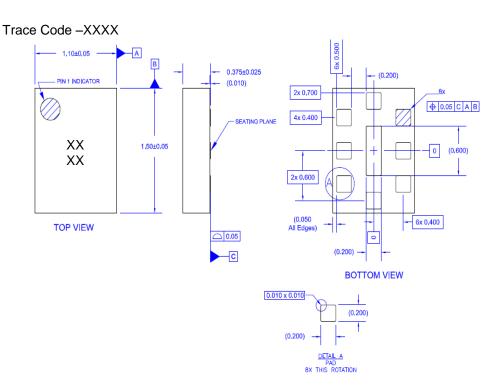

Bill of Material – QPC1022 - 50Ω

Reference Des. Value		Description	Man		Part Number
		Printed Circuit Board		Qorvo	QPC1022-411(B)
U1		QPC1022 Switch, QFN pkg.		Qorvo	QPC1022SB
R1, R2, R3	0 Ω	Resistor, Chip, 0402		various	
R4, R5	DNI				
C2, C3	100pF	Cap., Chip, 0402, 5%, 50V. NPO/COG		various	
C1	2200pF	Cap, 10%, 50V, X7R, 0402		various	
J1, J2, J3		CONN, SMA, EL FLT VIPER, MAT-21-1038			
P1		CONN, HDR, ST, PLRZD, 5-PIN, 0.100"			

Q000.

QPC1022 Broad Band Low Distortion SPDT Switch

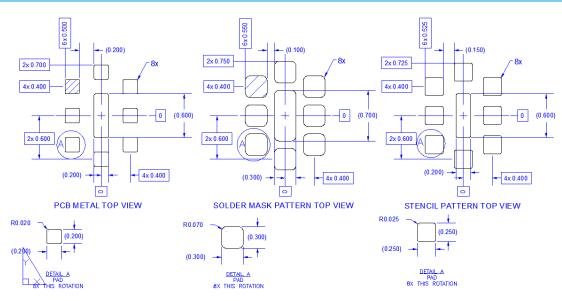
Pin Configuration and Description


Pad No.	Label	Description	
1,3,9	GND	Connect with Low inductive path to ground	
2	ANT	Single-Ended RF port	
4	RF1	Single-Ended RF port	
5	CTRL	Switch Logic control input	
6	EN	Shutdown logic control input	
7	Vdd	Supply Voltage	
8	RF2	Single-Ended RF port	

QOUND

QPC1022 Broad Band Low Distortion SPDT Switch

Package Marking and Dimensions


Marking:

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.
- 3. Contact plating: NiAu

PCB Mounting Pattern

Notes:

1. All dimensions are in millimeters. Angles are in degrees.

QOrvo

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 2	ESDA/JEDEC JS-001-2012	Caution!
ESD-Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F	ESD-Sensitive Device
MSL – Moisture Sensitivity Level	2	IPC/JEDEC J-STD-020	

Solderability

Compatible with both lead-free (260°C max. reflow temp.) soldering process. Solder profiles available upon request.

Contact plating: Au plating 0.5µm, over a 2µm Ni Plating

RoHS Compliance

This part is compliant with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU. This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free
- Qorvo Green

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Tel: 1-844-890-8163

Web: www.gorvo.com

Email: customer.support@gorvo.com

For technical questions and application information: Email: sjcapplications.engineering@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2018 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1