General Description

The QPC1022 is a single pole dual-throw (SPDT) switch designed for switching applications requiring very low insertion loss and high power handling capability with minimal DC power consumption. The excellent linearity performance achieved by the QPC1022 makes it ideal for use in cellular base. This switch offers very high isolation between RF ports providing greater separation between transmit and receive paths. The QPC1022 is packaged in a very compact $1.1 \mathrm{~mm} \times 1.5 \mathrm{~mm} \times 0.375 \mathrm{~mm}$ (typical) 9 -Pin LGA package.

Functional Block Diagram

9 Pin $1.1 \times 1.5 \mathrm{~mm}$ LGA Package

Product Features

- 5 MHz to 6 GHz Operation
- Low Insertion Loss: 0.25 dB at 2 GHz
- Harmonics:

2fo of -106 dBc at 1980 MHz
3 fo of -94 dBc at 1980 MHz

- High Isolation:

56 dB at 204 MHz
39 dB at 2 GHz

- High IP3:

76 dBm at 1.9 GHz

- Compatible with Low Voltage Logic (VHIGH Minimum $=1.3 \mathrm{~V}$)
- No External DC Blocking Capacitors Required on RF Paths Unless DC is Applied Externally
- 1000V HBM ESD Rating on All Ports

Applications

- Cellular BTS
- Post PA Switching
- General Purpose Switching Applications

Ordering Information

Part No.	Description
QPC1022SB	Sample Bag with 5 pieces
QPC1022SR	Sample Reel with 100 pieces
QPC1022TR7	Standard 7" Reel with 2,500 pieces
QPC1022PCK401	Fully Assembled 50 Ohm Evaluation Board and Sample Bag with 5 pieces

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-40 to $+150{ }^{\circ} \mathrm{C}$
Operating Temperature (Tcase)	-40 to $105^{\circ} \mathrm{C}$
Maximum Vdd	6.0 V
Maximum EN	3.0 V
Maximum CTRL	3.0 V
Max Input Power at $105^{\circ} \mathrm{C}$	$33 \mathrm{dBm}: 5 \mathrm{MHz}$

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

| Parameter | Min | | Typ | Max |
| :--- | :---: | :---: | :---: | :---: | Units

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Parameter	Conditions ${ }^{(1)}$	Min	Typ	Max	Units
Operational Frequency Range		5		6000	MHz
Insertion Loss RF1/RF2 to ANT	5.0 MHz to 1.0 GHz		0.2	0.4	dB
	1 GHz to 2.0 GHz		0.25	0.4	dB
	2.0 GHz to 2.5 GHz		0.26		dB
	2.5 GHz to 3.5 GHz		0.35		dB
	3.5 GHz to 3.8 GHz		0.38		dB
	3.8 GHz to 6 GHz		0.46		dB
Isolation RF1 to RF2	5.0 MHz to 200 MHz		56		dB
	200 MHz to 1.0 GHz	39	46		dB
	1.0 GHz to 2.0 GHz	32	39		dB
	2.0 GHz to 2.5 GHz		36		dB
	2.5 GHz to 3.5 GHz		34		dB
	3.5 GHz to 3.8 GHz		33		dB
	3.8 GHz to 6 GHz		29		dB
RF Port Return Loss (ANT, RF1, RF2)	5.0 MHz to 1.0 GHz		31		dB
	1 GHz to 2.0 GHz		23		dB
	2.0 GHz to 2.5 GHz		22		dB
	2.5 GHz to 3.5 GHz		18		dB
	3.5 GHz to 3.8 GHz		17.5		dB
	3.8 GHz to 6 GHz		14.5		dB
Harmonics 2fo	RFin $=35 \mathrm{dBm}, 915 \mathrm{MHz}$		-109		dBc
	RFin $=33 \mathrm{dBm}$, 1980MHz		-106	-80	dBc
Harmonics 3fo	RFin $=35 \mathrm{dBm}, 915 \mathrm{MHz}$		-98		dBc
	RFin $=33 \mathrm{dBm}$, 1980MHz		-94	-80	dBc

Notes:

1. Test conditions unless otherwise noted: $V_{D D}=+5.0 \mathrm{~V}$, Temp $=+25^{\circ} \mathrm{C}, 50 \Omega$ system.

QPC1022
Broad Band Low Distortion SPDT Switch

Electrical Specifications

Parameter	Conditions ${ }^{(1)}$	Min	Typ	Max	Units
OIP2 RFx to ANT (5MHz)	Tone $1: 5 \mathrm{MHz}$ at 10 dBm Tone 2: 4.95 MHz at 10 dBm		103		dBm
OIP2 RFx to ANT(450MHz)	Tone 1: 450 MHz at 10 dBm Tone 2: 445.5 MHz at 10 dBm		131		dBm
OIP2 RFx to ANT	Tone 1: 2480 MHz at 10 dBm Tone 2: 2690 MHz at 10 dBm		132		dBm
OIP3 RFX to ANT (5MHz)	Tone $1: 5 \mathrm{MHz}$ at 10 dBm Tone 2: 4.95 MHz at 10 dBm Tone 3: 4.85 MHz at 10 dBm		73		dBm
OIP3 RFX to ANT (450MHz)	Tone $1: 450 \mathrm{MHz}$ at 10 dBm Tone 2: 445.5 MHz at 10 dBm Tone 3: 436.5 MHz at 10 dBm		73		dBm
OIP3 RFX to ANT(850MHz)	30 MHz spacing at $20 \mathrm{dBm} /$ Tone		76		dBm
OIP3 RFX to ANT (1900MHz)	30 MHz spacing at $20 \mathrm{dBm} /$ Tone		76		dBm
Supply Current Idd	$\begin{aligned} & \mathrm{EN}=\text { High } \\ & \mathrm{EN}=\mathrm{Low} \end{aligned}$		$\begin{gathered} 52 \\ 2 \end{gathered}$	$\begin{gathered} 100 \\ 5 \end{gathered}$	uA
Control Voltage (EN, CTRL)	VHigh Vlow	1.3	$\begin{gathered} 1.8 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.75 \\ & 0.45 \end{aligned}$	V
Control Current (EN, CTRL)	Ihigh ILow		$\begin{aligned} & 2.5 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	uA
Switching Speed RF ON	50\% control to 90\% RF ON		2.6		us
Switching Speed RF OFF	50% control to 10\% RF ON		1.5		us
Startup Time from Shutdown	Maximum time for switch to reach full compliant operation		6		us
Turn on Time	Time from Vdd 50\% of operational voltage to RF signal at 90%		5	20	us

Notes:

1. Test conditions unless otherwise noted: $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}$, $\mathrm{Temp}=+25^{\circ} \mathrm{C}, 50 \Omega$ system.

Thermal Information

Parameter	Conditions	Value	Units
Thermal Resistance $\left(\theta_{\mathrm{JC}}\right)^{(1)}$	$37 \mathrm{dBm} @ 2 \mathrm{GHz}, 85 \mathrm{C}$ Stage Temperature	156	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Channel Temperature, $\mathrm{T}_{\mathrm{CH}}($ Under RF)	$37 \mathrm{dBm@} \mathrm{2GHz}, 85 \mathrm{C}$ Stage Temperature	125	${ }^{\circ} \mathrm{C}$

Notes:

1. Thermal Resistance is referenced to back of EVB.

Power-Up, Power-Down sequence and operation controls

Sequence for Power UP and Power DOWN from the supply that is connected to QPC1022 VDD pin.
Power-up Sequence:

1) Turn on $V_{D D}$ (supply)
2) Then EN
3) Then CTRL
4) Then $(20 \mu \mathrm{~s}$ or greater)
5) Apply RF signal

Power-Down Sequence:

1) Turn off RF signal
2) Then CTRL
3) Then EN
4) Turn off $V_{D D}$ (supply)

Sequence for going in and out of a mode, keeping the VDD or supply disabling/enabling the QPC1022 by

Power-Up Sequence:

1) Turn-on EN (enable)
2) Then CTRL
3) Then ($5 \mu \mathrm{~s}$ or greater)
4) Turn-on RF signal

Power-Down Sequence:

1) Turn-off RF signal
2) Then CTRL
3) Then EN (disable)

When changing switch positions
RF1 and RF2, no RF signal should to any RF port while the CTRL is states.

Switching Ports:

1) Turn-off RF signal
2) Then change CTRL state
3) Then ($5 \mu \mathrm{~s}$ or greater)
4) Turn-on RF signal

shutdown on, but the EN pin.

between be applied changing

Control Logic for Valid Operational States

State	V $_{\text {DD }}$	CTRL	EN	RF Path
1	2.4 V to 5.8 V	V HIGH	V HIGH	ANT-RF1
2	2.4 V to 5.8 V	V Low	X	V HIGH
Shutdown	2.4 V to 5.8 V		V Low	ANT-RF2

Performance Plots - 50Ω

Test conditions unless otherwise noted: $V_{D D}=+5 \mathrm{~V}$

Evaluation Board Schematic \& Layout for 50Ω Application

Bill of Material - QPC1022-50

Reference Des.		Value	Description	Manuf.
		Printed Circuit Board	Qorvo	QPC1022-411(B)
U1		QPC1022 Switch, QFN pkg.	Qorvo	QPC1022SB
R1, R2, R3	0Ω	Resistor, Chip, 0402	various	
R4, R5	DNI			
C2, C3	100 pF	Cap., Chip, 0402, 5\%, 50V. NPO/COG	various	
C1	2200 pF	Cap, 10\%, 50V, X7R, 0402	various	
J1, J2, J3		CONN, SMA, EL FLT VIPER, MAT-21-1038		
P1		CONN, HDR, ST, PLRZD, 5-PIN, 0.100"		

QPC1022
Broad Band Low Distortion SPDT Switch

Pin Configuration and Description

Pad No.	Label	Description
$1,3,9$	GND	Connect with Low inductive path to ground
2	ANT	Single-Ended RF port
4	RF1	Single-Ended RF port
5	CTRL	Switch Logic control input
6	EN	Shutdown logic control input
7	VDD	Supply Voltage
8	RF2	Single-Ended RF port

Package Marking and Dimensions

Marking:

Notes:

1. All dimensions are in millimeters. Angles are in degrees.
2. The terminal \#1 identifier and terminal numbering conform to JESD 95-1 SPP-012.
3. Contact plating: NiAu

PCB Mounting Pattern

Notes:

1. All dimensions are in millimeters. Angles are in degrees.

Handling Precautions

Parameter	Rating	Standard		
ESD - Human Body Model (HBM)	Class 2	ESDA/ JEDEC JS-001-2012		Caution!
ESD-Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F		
MSL-Moisture Sensitivity Level	2	IPC/JEDEC J-STD-020		

Solderability

Compatible with both lead-free $\left(260^{\circ} \mathrm{C}\right.$ max. reflow temp.) soldering process.
Solder profiles available upon request.
Contact plating: Au plating $0.5 \mu \mathrm{~m}$, over a $2 \mu \mathrm{~m}$ Ni Plating

RoHS Compliance

This part is compliant with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU. This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{O}_{2}\right)$ Free
- PFOS Free
- SVHC Free
- Qorvo Green

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:
Tel: 1-844-890-8163
Web: www.qorvo.com

Email: customer.support@qorvo.com

For technical questions and application information: Email: sjcapplications.engineering@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.
Copyright 2018 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Qorvo manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

