

5 MHz to 6000 MHz Digital Step Attenuator

Product Description

The QPC6614 is a 6-bit digital step attenuator (DSA) that features high linearity over the entire 31.5 dB gain control range with 0.5 dB steps. The QPC6614 uses serial control interface. The QPC6614 has a low insertion loss of 1.4 dB at 2 GHz. Patented circuit architecture provides overshoot-free transient switching performance.

Functional Block Diagram

24-pin 4.2 mm x 4.2 mm x 0.975 mm

Key Features

- 6-Bit, 31.5 dB, 0.5dB Step
- Patented Circuit Architecture
- Overshoot-free During Attenuation State Transitions
- Frequency Range 5 MHz to 6000 MHz
- High Linearity, IIP3 +55 dBm Typical
- · Serial Control Interface
- Fast Switching, 120 ns Typical
- Single Supply 3 V to 5 V Operation
- No DC Voltage on RF Pins, DC Grounding Allowed Externally
- Power-up Attenuation State Programmable

Applications

- · 2G through 4G Base Stations
- Point-to-Point
- Wi-Fi
- Test Equipment

Ordering Information

Part No.	Description
QPC6614TR13	2500 pcs on 13" reel
QPC6614PCK401	5-600MHz PCBA w/5pcs sample bag

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-40 to +150 °C
DC Supply Voltage (V _{DD})	-0.5 to +6.0 V
Signal Level (CLK, SERIN, LE and PUP2), when V_{DD} is applied	-0.5 to V _{DD}
Signal Level (CLK, SERIN, LE and PUP2), when V_{DD} is not applied	-0.5 to +4.0 V
RF Input Power (RFIN), +85°C Case Temp	+30 dBm
RF Input Power (RFOUT), +85°C Case Temp	+27 dBm

Notes

 Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
DC Supply Voltage (V _{DD}) (2)	+2.7	+5	+5.5	V
Case Temperature, Tc	-40		+105	°C
Operating Junction Temp. TJ			+125	°C

Notes

- Electrical specifications are measured at specified test conditions.
 Specifications are not guaranteed over all recommended operating conditions.
- 2. It is recommended to apply V_{DD} before applying any signal to logic pins.

Electrical Specifications

Parameter	Conditions	Min	Тур	Max	Units
Frequency Range		5		6000	MHz
Insertion Loss	0 dB Attenuation Setting		1.4	2.4	dB
Attenuation Range			31.5		dB
Attenuation Step			0.5		dB
Attenuation Accuracy		± (0.3 +	3% of Atten.	Setting)	dB
Input IP3			+55		dBm
Input P0.1dB			+30		dBm
RF Input Power to RFIN				+27	dBm
RF Input Power to RFOUT				+20	dBm
Return Loss			15		dB
Switching Time	50% LE Rising Edge to 10%/90% RF Output		120		ns
Successive Step Phase Delta	2000 MHz		2		Deg.
Supply Current, IDD	Steady state operation (2)		180		μA
Thermal Resistance	At maximum attenuation state with RF power applied to the ATTIN		60		°C/W

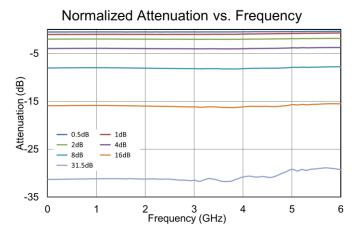
Notes:

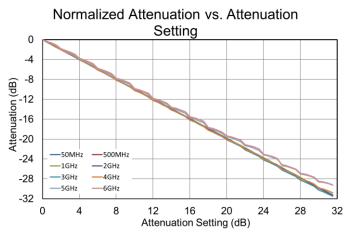
- 1. Test conditions unless otherwise noted: V_{DD} =+5 V, Temp= +25 °C, Freq = 2GHz, 50 Ω system.
- 2. Current draw during attenuation state transitions is higher.

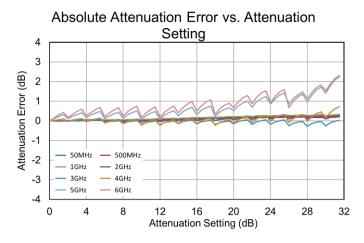
Control Logic Specifications

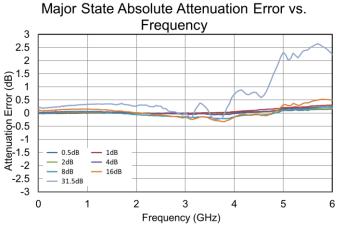
Parameter	Conditions	Min	Тур	Max	Units
Logic Low Input Voltage		0		+0.63	V
Logic High Input Voltage		+1.17		V_{DD}	V

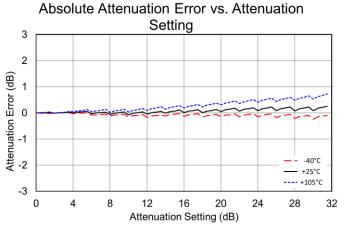
Notes:

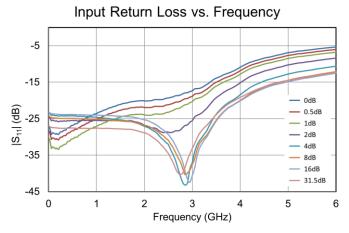

1. Test conditions unless otherwise noted: V_{DD} =+5 V, Temp= +25 °C; Apply to CLK, SERIN, LE and PUP2

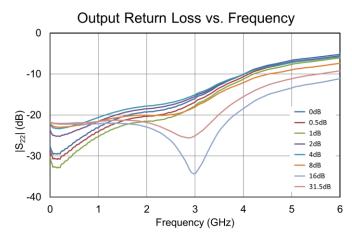


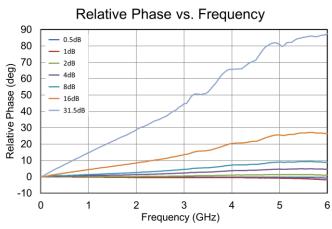

Performance Plots - QPC6614

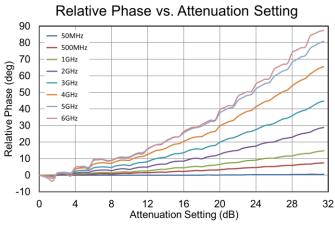

Test conditions unless otherwise noted: $V_{DD} = +5.0 \text{ V}$, 50Ω system, Temp = 25°C

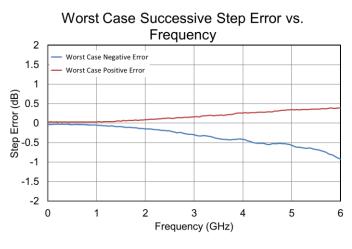


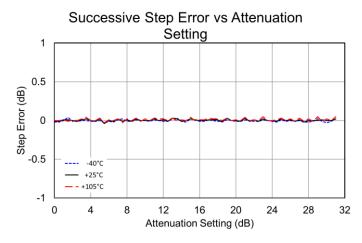


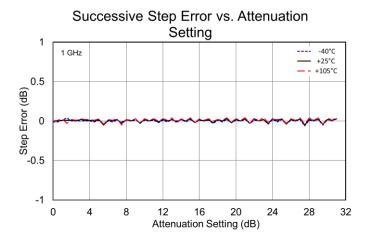


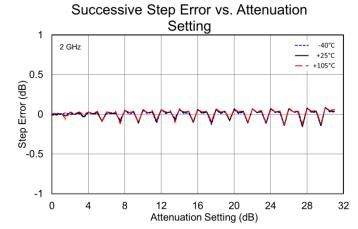


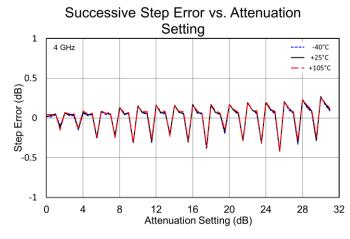

Performance Plots - QPC6614 (Continued 1)

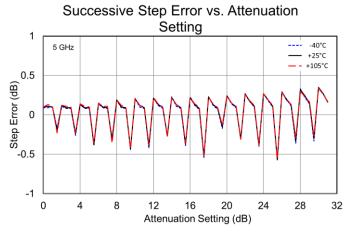

Test conditions unless otherwise noted: $V_{DD} = +5.0 \text{ V}$, 50Ω system, Temp = 25° C

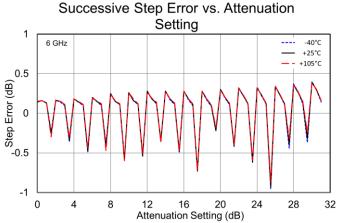


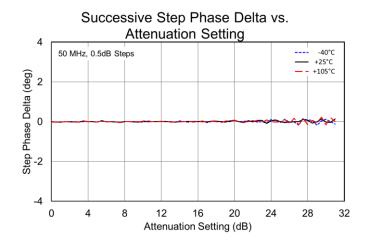


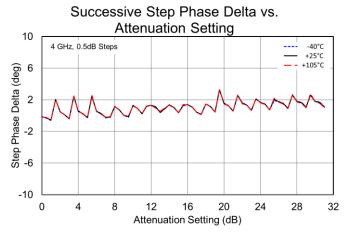


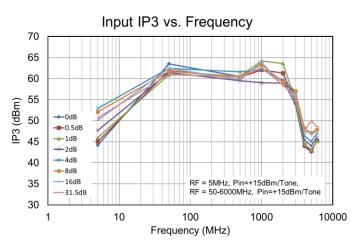

Performance Plots - QPC6614 (Continued 2)

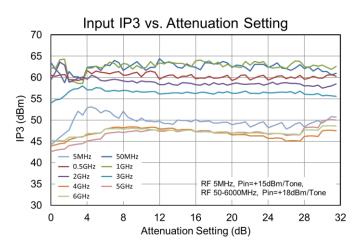

Test conditions unless otherwise noted: $V_{DD} = +5.0 \text{ V}$, 50Ω system, Temp = 25°C

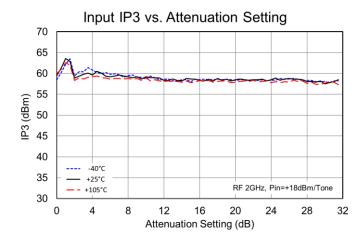


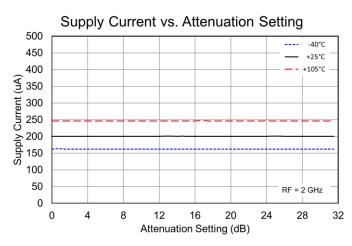


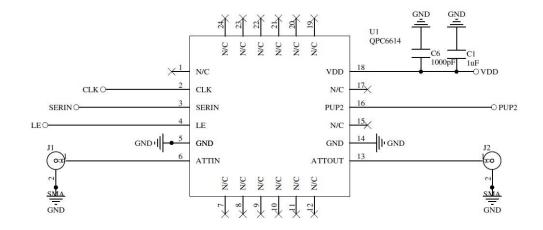


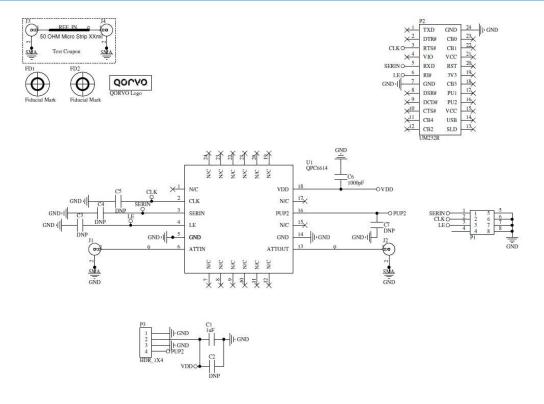



Performance Plots - QPC6614 (Continued 3)

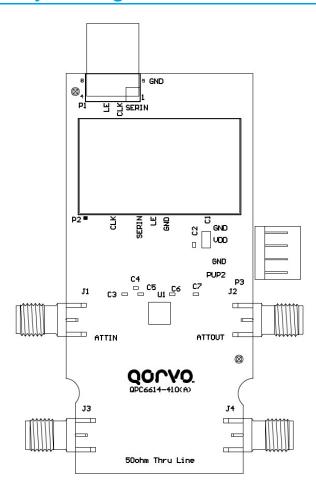

Test conditions unless otherwise noted: $V_{DD} = +5.0 \text{ V}$, 50Ω system, Temp = 25°C






Typical Application Schematic – 5 MHz to 6000 MHz

Notes


1. If digital control signal of 4 - 5V is applied prior to V_{DD}, use series 1k Ohm resistor at the input of CLK, SERIN, LE and PUP2,

Evaluation Board Schematic - 5 MHz to 6000 MHz

Evaluation Board Assembly Drawing

Bill of Material - Evaluation Board

Reference Des.	Value	Description	Manufacturer	Part Number
	-	QPC6614-410	ViaSystems	QPC6614-410(A)
U1	-	Digital Step Attenuator 5 MHz to 6000 MHz	Qorvo	QPC6614SB
J1- J4	-	CONN, SMA, END LNCH, UNIV, HYB MNT, FLT	Molex	SD-73251-4000
C1	1 μF	CAP, 1 μF, 10%, 25 V, X7R, 1206	Taiyo Yuden	CE TMK316B7105KL-T
C6	1000 pF	CAP, 1000 pF, 10%, 50 V, X7R, 0402	TDK Corporation	C1005X7R1H102KT000F
P2	-	CONN, SKT, 24-PIN DIP, .600", T/H	Aries Electronics Inc.	24-6518-10
M1 ⁽¹⁾	-	MOD, USB TO SERIAL UART, SSOP-28	Future Technology	UM232R
P3	-	CONN, HDR, ST, 4-PIN, 0.100"	Samtec Inc.	TSW-104-08-S-S
P1	-	CONN, HDR, 2 X 4, RA, 0.100, T/H	Samtec Inc.	TSW-104-08-G-D-RA

Notes:

1. M1 should be mounted into P2 with respect to the Pin 1 alignment of M1 and P2.

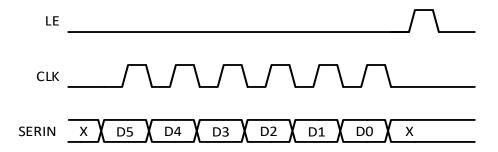
Evaluation Board Programming Using USB Interface

Serial Addressable Mode

Refer to the Control Bit Generator (CBG) Software Reference Manual for detailed instructions on how to setup the software for use. Apply the supply voltage to P3. Select QPC6614 from the RFMD Parts List of the CBG user interface. Set the attenuation value using the CBG user interface. The attenuator is set to the desired state and measurements can be taken.

Evaluation Board Programming Using External Bus

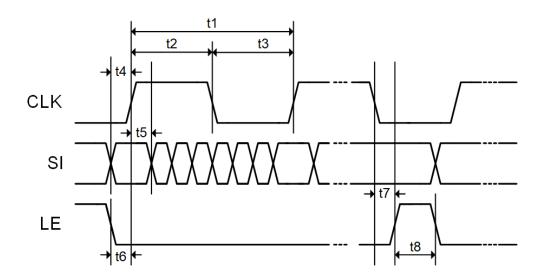
Serial Addressable Mode


This configuration allows the user to control the attenuator through the P1 connector using an external harness. Remove the USB interface board if it is currently installed on the evaluation board. Connect a user-supplied harness to the P1 connector. Note the top row of the P1 contains the serial bus signals and the bottom row is ground. Apply the supply voltage to P3. Send the appropriate signals onto the serial bus lines in accordance with the Serial Mode Timing Diagram. The attenuator is set to the desired state and measurements can be taken. If digital control signal of 4 - 5V is applied prior to V_{DD}, use series 1k Ohm resistor at the input of CLK, SERIN, LE and PUP2.

Default Power-up State

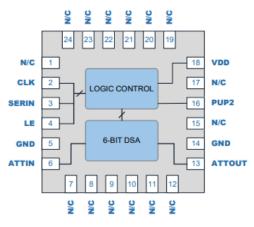
The attenuation state set during power-up can be controlled using the PUP2 pin. To power-up in the maximum attenuation state, apply a logic low to PUP2 pin prior to applying supply voltage V_{DD} . To power-up in the minimum attenuation state apply a logic high to the PUP2 pin prior to applying supply voltage V_{DD} .

Serial Mode Timing Diagram



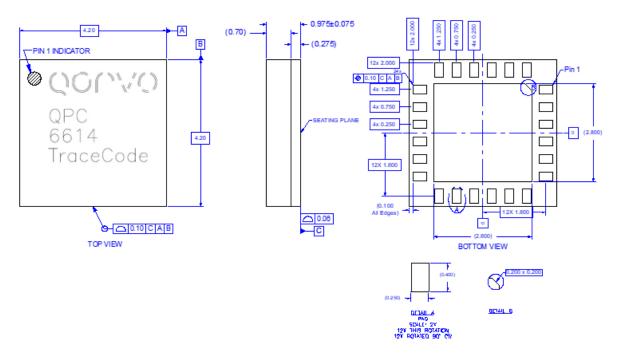
Serial Programmable Attenuation Word Truth Table

	Attenuation Word						
D5 (MSB)	D4	D3	D2	D1	D0 (LSB)	Attenuation State	
Н	Н	Н	Н	Н	Н	0dB / Reference Insertion Loss	
Н	Н	Н	Н	Н	L	0.5dB	
Н	Н	Н	Н	L	Н	1dB	
Н	Н	Н	L	Н	Н	2dB	
Н	Н	L	Н	Н	Н	4dB	
Н	L	Н	Н	Н	Н	8dB	
L	Н	Н	Н	Н	Н	16dB	
L	L	L	L	L	L	31.5dB	


Serial Bus Timing Specifications

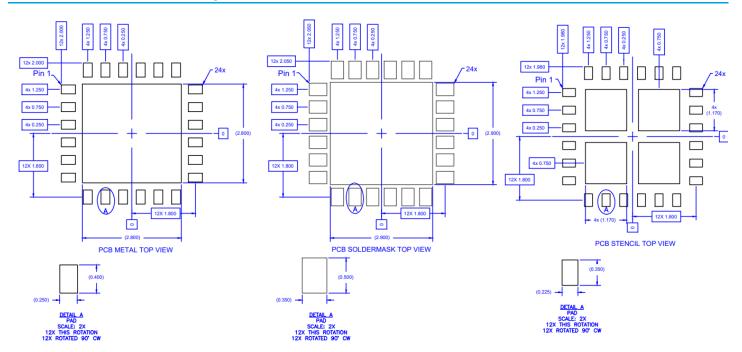
Parameter	Symbol	Min.	Max.	Unit
CLK Frequency	1/t1		25	MHz
CLK High Time	t2	20		ns
CLK Low Time	t3	20		ns
SI Setup Time	t4	5		ns
SI Hold Time	t5	5		ns
LE Low Setup Time	t6	5		ns
LE High Setup Time	t7	5		ns
LE High Time	t8	10		ns

Pad Configuration and Description



Top View

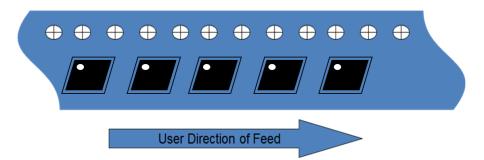
Pad No.	Label	Description				
1	NC	No Internal Connect	ion			
2	CLK	Serial Clock Input.				
3	SERIN	Serial Data Input.	f 4~5V signals present prior to V_{DD} , $1K\Omega$ series resistors required on each of th bins.			
4	LE	Latch Enable.	JIIIS.			
5	GND	Connect to PCB Gro	ound			
6	ATTIN		F power must enter this pin for rated thermal performance and reliability. Do not apply in. It is internally with resistive ground return. External DC ground allowed.			
7	NC	No Internal Connect	ion			
8	NC	No Internal Connect	ion			
9	NC	No Internal Connect	ion			
10	NC	No Internal Connect	ion			
11	NC	No Internal Connect	No Internal Connection			
12	NC	No Internal Connect	No Internal Connection			
13	ATTOUT	RF Output. Do not apply DC voltage to this pin. It is internally with resistive ground return. External DC ground allowed.				
14	GND	Connect to PCB Gro	Connect to PCB Ground			
15	NC	No Internal Connect	ion			
16	PUP2		Power-up Programming Pin. See Default Power-up State Section for usage. If 4~5V signal presents prior to V_{DD} , $1K\Omega$ series resistor required on this pin.			
17	NC	No Internal Connect	ion			
18	VDD	DC Supply Voltage I	nput			
19	NC	No Internal Connect	ion			
20	NC	No Internal Connect	ion			
21	NC	No Internal Connect	No Internal Connection			
22	NC	No Internal Connect	No Internal Connection			
23	NC	No Internal Connect	ion			
24	NC	No Internal Connect	ion			
Backside Paddle	-	RF/DC ground. See	PCB Layout Pattern for suggested foot print			

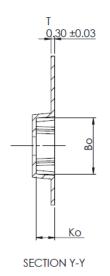

Package Marking and Dimensions

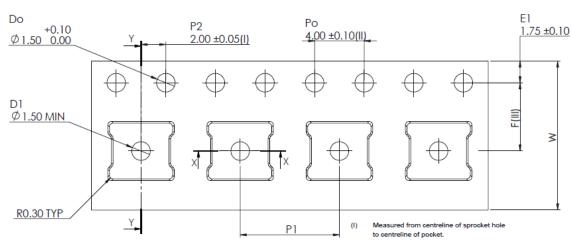
Notes:

1. All Dimensions in millimeters

Recommended PCB Layout Pattern

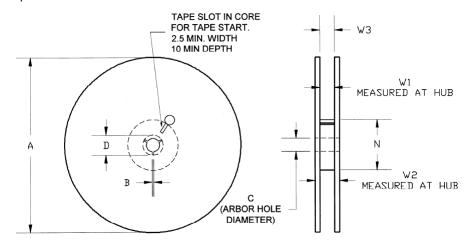



Notes:

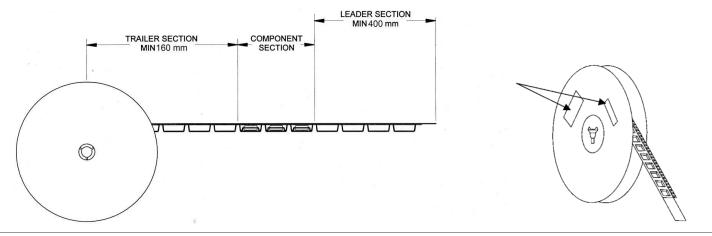

1. All Dimensions in millimeters. All angles are in degrees.

Tape and Reel Information – Carrier and Cover Tape Dimensions

- Cumulative tolerance of 10 sprocket holes is ± 0.20 .
- Measured from centreline of sprocket
- hole to centreline of pocket. Other material available.


ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.177	4.5
Cavity	Width	B0	0.177	4.5
Cavily	Depth	K0	0.059	1.5
	Pitch	P1	0.315	8.0
Centerline Distance	Cavity to Perforation - Length Direction	P2	0.079	2.0
Centenine Distance	Cavity to Perforation - Width Direction	F	0.217	5.50
Cover Tape	Width	С	0.362	9.20
Carrier Tape	Width	W	0.472	12.0


Tape and Reel Information – Reel Dimensions

Standard T/R size = 2,500 pieces on a 13" reel.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Diameter	Α	12.992	330
Flange	Thickness	W2	0.717	18.2
	Space Between Flange	W1	0.504	12.8
	Outer Diameter	N	4.016	102.0
Llub	Arbor Hole Diameter	С	0.512	13.0
Hub	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.795	20.2

Tape and Reel Information - Tape Length and Label Placement

Notes:

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Handling Precautions

Parameter	Rating	Standard
ESD-Human Body Model (HBM)	Class 1C	ESDA/JEDEC JESD22-A114
ESD-Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F
MSL-Moisture Sensitivity Level	Level 2	IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: Ni/Pd/Au (Electroless Ni 2-5 μm, Electroless Pd 0.11-0.18 μm, Electroless (hybrid) Au 0.07 – 0.12 μm)

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2020 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Attenuators category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

HMC305SLP4ETR MAAD-009195-000100 TGL4201-00 TGL4201-02 TGL4201-03 TGL4201-06 TGL4201-10 ATN3590-15 20-50TPC

D10AA5Z4 18AH-01 18AH-08 ATN3580-20 ATN3590-09 20-50RP MASW-008322-000000 MAATCC0009TR PCAF-10 EXB
24AT9AR5X ATN3580-06 ATN3580-10 HMC539ALP3ETR ATN3580-02 ATN3590-07 SKY12408-321LF ATN3580-03

WA04P005XBTL HMC-VVD104-SX WA04P007XCTL SKY12236-11 MAATSS0018TR-3000 HMC656-SX WA04P001XBTL MAAV
007941-TR3000 WA04P004XBTL WA04P002XBTL C3A50Z4 HMC941A PAT0816-C-0DB-T5 PAT0816-C-8DB-T5 PAT1632-C-3DB
T1 PAT1632-C-6DB-T1 PAT1632-C-10DB-T1 PAT1632-C-1DB-T1 PAT0816-C-2DB-T5 PAT0816-C-4DB-T5 DHM510-0100-006

CMD172 MAT10300 MAT10180