75Ω SP4T Switch 5 MHz to 2000 MHz

Product Overview

The QPC6742 is a 75Ω Silicon on Insulator (SOI) single-pole, four throw (SP4T) switch designed for use in CATV, satellite set top, and other high-performance communications systems. It offers a high isolation symmetric topology with excellent linearity and power handling capability. No blocking caps are necessary on the RF ports. QPC6742 is packaged in a convenient $1.8 \mathrm{~mm} x$ 1.8 mm QFN package

12 Pin $1.8 \times 1.8 \mathrm{~mm}$ QFN Package

Key Features

- 5 MHz to 2000 MHz Operation
- 5 MHz to 3300 MHz Operation with Additional Matching
- Low Insertion Loss: 0.35 dB at 800 MHz
- No Blocking Caps Required Unless Voltage on RF Line
- High Isolation: 42 dB at 800 MHz
- High Input IP3: 82 dBm at 850 MHz
- 2kV ESD
- +1.8V Logic Compatible
- 3 V to 5 V Operation

Applications

- MDU Amplifiers
- Point To Point
- Optical Nodes
- Set Top Box
- PCTV
- Multi-tuner DVR

Ordering Information

Part No.	Description
QPC6742SQ	Sample bag with 25 pieces
QPC6742SR	7" Reel with 100 pieces
QPC6742TR7	7" Reel with 2500 pieces
QPC6742PCK	$5-2000 \mathrm{MHz}$ PCBA with 5 pc. sample bag

Absolute Maximum Ratings

Parameter	Rating
Control Voltage $\left(\mathrm{V}_{\mathrm{C} 1, \mathrm{C} 2}\right)$	+3.0 V
Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	+6.0 V
Maximum CW Input Power at $25^{\circ} \mathrm{C}$	+35 dBm
Max Input Power During Active Switching	+27 dBm
Storage Temperature Range	-40 to $+150^{\circ} \mathrm{C}$

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min		Typ	
Max		Units		
Supply Voltage, V_{DD}	+2.7	+3	+5.5	V
Temperature Range	-40		+85	${ }^{\circ} \mathrm{C}$

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications; QPC6742-4000B EVB

Parameter	Conditions ${ }^{(1)}$	Min	Typ	Max	Units
Frequency Range		5		2000	MHz
Insertion Loss (RFC to RF1/RF2/RF3/RF4)	5 MHz		0.20		dB
	50 MHz		0.30		
	800 MHz		0.35		
	1.2 GHz		0.40		
	2GHz		0.45		
$\begin{aligned} & \text { Return Loss }{ }^{(2)} \\ & \text { (RFC, RFx) } \end{aligned}$	5 MHz		40		dB
	50 MHz		45		
	800 MHz		30		
	1.2 GHz		30		
	2 GHz		30		
Isolation ${ }^{(3)}$ (RFC to RF1/RF2/RF3/RF4)	5 MHz		75		dB
	50 MHz		62		
	800 MHz		42		
	1.2 GHz		38		
	2 GHz		31		
Isolation ${ }^{(3)}$ (RF1/RF2/RF3/RF4)	5 MHz		80		dB
	50 MHz		65		
	800 MHz		43		
	1.2 GHz		39		
	2GHz		34		

Notes:

1. Test Conditions Unless Otherwise Specified: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C} 1, \mathrm{C} 2}=0 /+2.5 \mathrm{~V}, 75 \Omega$ system.
2. Includes series matching. Refer to EVB Schematic on page 5.
3. Average Isolation. Refer to Performance Plots on pg. 8 for more detail.

Electrical Specifications (cont'd.)

Parameter	Conditions ${ }^{(1)}$	Min	Typ	Max	Units
Input IP3	$850 \mathrm{MHz}+12 \mathrm{dBm}$ input power per tone, 30 MHz tone spacing		82		dBm
Input IP2	$850 \mathrm{MHz}+12 \mathrm{dBm}$ input power per tone, 30 MHz tone spacing		130.6		
Input 1dB Compression Point	850 MHz		40.2		
Input 0.1dB Compression Point	850 MHz		34.0		
MER ${ }^{(2)}$	75 dBmV composite at 885 MHz		41.7		dB
$\mathrm{CCN}{ }^{(2)}$	75 dBmV composite at 885 MHz		55.8		
Switching Speed	10/90\% RF		0.6		$\mu \mathrm{s}$
Switching Speed	50\% control to 10/90\% RF		1.3		
Turn On Time	Time for VDD $=0 \mathrm{~V}$ to part ON and RF $=90 \%$		20		
NVG Spurs	$\mathrm{F}<30 \mathrm{MHz}$		-118		dBm
Harmonics-2nd	5 MHz		-76		dBc
	50 MHz		-88		
	850 MHz		-129		
	1800 MHz		-114		
Harmonics-3rd	5 MHz		-97		dBc
	50 MHz		-110		
	850 MHz		-129		
	1800 MHz		-110		

Notes:

1. Test Conditions Unless Otherwise Specified: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}}=0 /+2.5 \mathrm{~V}, 75 \Omega$ system. Drive RFC, RFx output.
2. $\mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTL}}=0 /+2.5 \mathrm{~V}, 75 \Omega$ system.

Electrical Specifications - Power Supply

Parameter	Conditions ${ }^{(1)}$	Min	Typ	Max	Units
Supply Current (lod)	$\mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$		65	130	$\mu \mathrm{A}$
Control Current				5	$\mu \mathrm{A}$
Control Voltage High		1.3		2.7	V
Control Voltage Low		0		0.45	V

Power Supply Sequencing Requirements

Condition	Sequence
Power Up	Turn on VDD, then C1 and C2, then (20 μ s or greater), apply RF signal
Power Down	Turn off RF signal, then C1 and C2, turn off VDD

Truth Table

Mode	Control Signals	
	C1	C2
RFC to RF1	High	Low
RFC to RF2	Low	High
RFC to RF3	High	High
RFC to RF4	Low	Low

5-2000 MHz Evaluation Board Schematic (QPC6742PCK)

Ref. Designator	Description	Manufacturer	Part Number
PCB	Evaluation Board PCB	Viasystems	QPC6742-4000B
U1	75ohm SP4T Switch	Qorvo	QPC6742
J1, J2, J3, J4, J5	F Connector, Edge Mount, 75 $\Omega, 0.065 "$	Genesis Technology	GT20-300204
P1	CONN, HDR, ST, PLRZD, 5-PIN, 0.100"	ITW Pancon	MPSS100-5-C
C3	CAP, 0.1uF, 10\%, 16V, X7R, 0402	Kemet	C0402C104K4RACTU
L1, L2, L3, L4, L5	IND,2.2nH,+/-0.2nH, M/L, MID-Q, 0201	TDK	MLG0603PPA2N2CT000
C1, C2	DNP	N/A	N/A

Evaluation Board Assembly (QPC6742PCK)

EVB PCB Material and Stack-up

Board Material: 0.020" RO4003C, $\varepsilon_{r}=3.38$
Final Plating: 0.5 oz Copper
Board Dimension: 1.1 " $\times 2.55$ "
Total Thickness: 50.2 mils

Layer	Name	Material	Thickness	Constant	Board Layer Stack
1	Top Overlay				
2	Top Solder	Solder Resist	0.40 mil	3.5	
3	Top Layer	Copper	0.70 mil		
4	Dielectric1	R04003C	20.00 mil	3.38	
5	MidLayer1	Copper	1.40 mil		
6	Dielectric2	370 HR	4.22 mil	3.7	
7	MidLayer2	Copper	1.40 mil		
8	Dielectric3	$370 H R$	21.00 mil	4.34	
9	Bottom Layer	Copper	0.70 mil		
10	Bottom Solder	Solder Resist	0.40 mil	3.5	
11	Bottom Overlay				

Performance Plots, QPC6742PCK

Notes:

$$
\text { 1. } \mathrm{VDD}=+3.0 \mathrm{~V}, \mathrm{VC} 2, \mathrm{C} 1=0 / 2.5 \mathrm{~V}, \mathrm{Temp}=+25^{\circ} \mathrm{C}, \mathrm{Zo}=75 \Omega
$$

2. Insertion Loss plots are loss compensated to remove effects of EVB.
3. Group Delay is deembedded to remove effects of EVB and matching elements.

Performance Plots (cont'd.)

Notes:

1. $\mathrm{VDD}=+3.0 \mathrm{~V}, \mathrm{VC2}, \mathrm{C} 1=0 / 2.5 \mathrm{~V}, \mathrm{Temp}=+25^{\circ} \mathrm{C}, \mathrm{Zo}=75 \Omega$

Performance Plots (cont'd.)

Notes:

1. $\mathrm{VDD}=+3.0 \mathrm{~V}, \mathrm{VC2}, \mathrm{C} 1=0 / 2.5 \mathrm{~V}, \mathrm{Temp}=+25^{\circ} \mathrm{C}, \mathrm{Zo}=75 \Omega$

Performance Plots (cont'd.)

Notes:

1. $\mathrm{VDD}=+3.0 \mathrm{~V}, \mathrm{VC} 2, \mathrm{C} 1=0 / 2.5 \mathrm{~V}, \mathrm{Temp}=+25^{\circ} \mathrm{C}, \mathrm{Zo}=75 \Omega$

Performance Plots (cont'd.)

Notes:

1. $\mathrm{VDD}=+3.0 \mathrm{~V}, \mathrm{VC} 2, \mathrm{C} 1=0 / 2.5 \mathrm{~V}, \mathrm{Temp}=+25^{\circ} \mathrm{C}, \mathrm{Zo}=75 \Omega$
2. +12 dBm per tone.

Performance Plots (cont'd.)

MER/CCN Test Conditions:

1. $\mathrm{VDD}=+5.0 \mathrm{~V}, \mathrm{VC} 2, \mathrm{C} 1=0 / 2.5 \mathrm{~V}, \mathrm{Temp}=+25^{\circ} \mathrm{C}, \mathrm{Zo}=75 \Omega$
2. 190 QAM 256 Channels, $57-1215 \mathrm{MHz}$, ITU-T J. 83 , Annex B
3. CCN test procedure according to ANSI/SCTE 17. System BW 5.36 MHz .

Additional Applications; 5-3300MHz (QPC6742-4001A EVB)

Notes:

1. L1-L5 optimized for return loss for mid band. For applications with $\mathrm{F}_{\mathrm{MAX}}<1.8 \mathrm{GHz}$, reduce the value of L1-L5 to 2.2 nH or less. Depending on application return loss limits, it may also be acceptable to use a single series inductor on RFC.
2. C4-C8 optimized to trim return loss at 3.3 GHz . For applications with $\mathrm{F}_{\mathrm{MAX}}$ of 1.8 GHz or lower, $\mathrm{C} 4-\mathrm{C} 8$ should be deleted.
3. Isolation can be optimized by maximizing ground between RF Ports and using coplanar RF tracks to U1.

Ref. Designator	Description	Manufacturer	Part Number
PCB	Evaluation Board PCB	Viasystems	QPC6742-4001A
U1	75ohm SP4T Switch	Qorvo	QPC6742
J1, J2, J3, J4, J5	F Connector, Edge Mount, 75 $\Omega, 0.065 "$	Genesis Technology	GT20-300204
P1	CONN, HDR, ST, PLRZD, 5-PIN, 0.100"	ITW Pancon	MPSS100-5-C
C3	CAP, 0.1uF, 10\%, 16V, X7R, 0402	Kemet	C0402C104K4RACTU
C4, C5, C6, C7, C8	Cap0402 0.3pF ROHS	Johanson Technology	500R07SOR3AV4T
L1, L2, L3, L4, L5	IND, 3.0nH, +/-0.2nH, T/F, HI-Q, 0201	Murata	LQP03TN3N0C02D
C1, C2	CAP, 100pF, 10\%, 16V, COG, 0402	Kemet	C0402C101K4GACTU

Additional Applications; 5-3300MHz (QPC6742-4001A EVB)

EVB PCB Material and Stack-up

Board Material: 0.020" RO4003C, $\varepsilon_{\mathrm{r}}=3.38$
Final Plating: 0.5 oz Copper Board Dimension: $1.1^{\prime \prime} \times 2.55{ }^{\prime \prime}$ Total Thickness: 50.2 mils

Layer	Name	Material	Thickness	Constant	Board Layer St ack
1	Top Overlay				
2	Top Solder	Solder Resist	0.40 mil	3.5	
3	Top Layer	Copper	0.70 mil		
4	Dielectric1	R04003C	20.00 mil	3.38	
5	MidLayer1	Copper	1.40 mil		
6	Dielectric2	370 HR	4.22 mil	3.7	
7	MidLayer2	Copper	1.40 mil		
8	Dielectric3	370 HR	21.00 mil	4.34	
9	Bottom Layer	Copper	0.70 mil		
10	Bottom Solder	Solder Resist	0.40 mil	3.5	
11	Bottom Overlay				

Additional Applications; Performance Plots (QPC6742-4001A EVB)

Notes:

$$
\text { 1. } \mathrm{VDD}=+3.0 \mathrm{~V}, \mathrm{VC} 2, \mathrm{C} 1=0 / 2.5 \mathrm{~V}, \mathrm{Temp}=+25^{\circ} \mathrm{C}, \mathrm{Zo}=75 \Omega
$$

2. Insertion Loss plots are loss compensated to remove effects of EVB.
3. Group Delay is deembedded to remove effects of EVB and matching elements.

Additional Applications; Performance Plots (QPC6742-4001A EVB)

Notes:

1. $\mathrm{VDD}=+3.0 \mathrm{~V}, \mathrm{VC2}, \mathrm{C} 1=0 / 2.5 \mathrm{~V}, \mathrm{Temp}=+25^{\circ} \mathrm{C}, \mathrm{Zo}=75 \Omega$

QPC6742
75Ω SP4T Switch 5 MHz to 2000 MHz

Additional Applications; Performance Plots (QPC6742-4001A EVB)

Notes:

1. $\mathrm{VDD}=+3.0 \mathrm{~V}, \mathrm{VC} 2, \mathrm{C} 1=0 / 2.5 \mathrm{~V}, \mathrm{Temp}=+25^{\circ} \mathrm{C}, \mathrm{Zo}=75 \Omega$

Additional Applications; Performance Plots (QPC6742-4001A EVB)

Pin Configuration and Description

Top View

Pad No.		Label
1	C2	Sescription
2	C1	Switch Logic Control 1
3	VDD	Supply Voltage
4	RF4	RF Output Port
5	GND	Ground
6	RF3	RF Output Port
7	RFC	RF Input Port
8	GND	Ground
9	RF1	RF Output Port
10	GND	Ground
11	RF2	RF Output Port
12	GND	Ground

Package Dimensions

Notes:

1. All dimensions are in millimeters. Angles are in degrees.
2. The terminal \#1 identifier and terminal numbering conform to JESD 95-1 SPP-012.
3. Contact plating: Matte Sn

Package Marking

Pin 1 Indicator

Trace Code to be assigned by SubCon

Recommended Footprint

Notes:

1. All dimensions are in millimeters. Angles are in degrees.

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 2 (2000V)	ANSI/ESD/JEDEC JS-001-2010	
ESD-Charged Device Model (CDM)	Class C3 (1000V)	JESD22-C101	
MSL-Moisture Sensitivity Level	MSL2	JEDEC J-STD-020	

Solderability

Compatible with both lead-free ($260^{\circ} \mathrm{C}$ max. reflow temp.) and tin/lead ($245^{\circ} \mathrm{C}$ max. reflow temp.) soldering processes.
Solder profiles available upon request.
Contact plating: Matte Sn

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{O}_{2}\right)$ Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:
Web: www.qorvo.com
Tel: 1-844-890-8163
Email: customer.support@qorvo.com

Important Notice

The information contained in this Data Sheet and any associated documents ("Data Sheet Information") is believed to be reliable; however, Qorvo makes no warranties regarding the Data Sheet Information and assumes no responsibility or liability whatsoever for the use of said information. All Data Sheet Information is subject to change without notice. Customers should obtain and verify the latest relevant Data Sheet Information before placing orders for Qorvo® products. Data Sheet Information or the use thereof does not grant, explicitly, implicitly or otherwise any rights or licenses to any third party with respect to patents or any other intellectual property whether with regard to such Data Sheet Information itself or anything described by such information.

DATA SHEET INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo® products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Applications described in the Data Sheet Information are for illustrative purposes only. Customers are responsible for validating that a particular product described in the Data Sheet Information is suitable for use in a particular application.
© 2021 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc. | QORVO® is a registered trademark of Qorvo US, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Qorvo manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A
SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405490LF BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024

