
#### **Product Overview**

The Qorvo® QPC9314 is a highly integrated front-end module targeted for TDD macro or picocell base stations. The LNA switch module integrates RF functional blocks such as a pin-diode based high power switch capable of handling up to 52 W with an LTE signal (8 dB PAR) along with two LNA stages, and a 1-bit DSA to provide a high and low gain mode. Further integration is also implemented where the pin diode driver and dc-dc converter circuits are implemented inside the module to enable only the need for an external 5 V power supply. The control voltage for the switch and gain control. mode is with 3.3 V logic.

The QPC9314 can be utilized across the 2.3-2.7 GHz range to provide 1.2 dB noise figure for operation in the receive mode and 0.5 dB insertion loss in the transmit mode. The LNAs utilize Qorvo's high performance E-pHEMT process while the switch allows for power levels up to 330 W peak power to be routed to an external load termination.

The QPC9314 is packaged in a RoHS-compliant, compact 8x8 mm surface-mount leadless package. The switch LNA module is targeted for wireless infrastructure applications configured for TDD-based architectures.

#### **Functional Block Diagram**



#### QPC9314 High Power Switch LNA Module



16 Pin 8 mm x 8 mm leadless SMT Package

#### **Key Features**

- 2.3-2.7 GHz frequency range
- Integrates a high power switch, two LNA stages, a 1-bit DSA, pin diode driver circuits, and dc converter
- Ideal for TDD systems with an isolator
- Only requires a 5 V supply with 3.3 V logic Ctrl.
- Max RF Input power: 52 W Pavg (8 dB PAR)
- 33 or 24 dB gain (Rx high and Rx low gain mode)
- 1.2 dB noise figure
- +33 dBm OIP3 (Rx mode)
- 0.65 dB Insertion Loss (Tx mode)
- Compact package size, 8x8 mm

#### **Applications**

- Wireless Infrastructure
- Macro or picocell base stations
- TDD-based architectures

#### **Ordering Information**

| Part No.    | Description            |
|-------------|------------------------|
| QPC9314TR13 | 2500 pcs on a 13" reel |
| QPC9314SR   | 100 pcs on a 7" reel   |
| QPC9314EVB  | Evaluation board       |

## QOLAD

#### QPC9314 **High Power Switch LNA Module**

#### Absolute Maximum Ratings

| Parameter                          | Rating        |
|------------------------------------|---------------|
| Storage Temperature                | -50 to 150 °C |
| Max Operating Temperature          | +115 °C       |
| Vcc                                | +6 V          |
| RF at ANT (Tx Mode) <sup>(1)</sup> | +47.2 dBm     |
| RF at ANT (Tx Mode) (2)            | +44.2 dBm     |
| RF at ANT (Tx Mode) (3)            | +46.0 dBm     |
| RF at ANT (Rx Mode) (2)            | +20 dBm       |

Notes:

10s, 8 dB PAR, 88% duty cycle, +100°C, 1CH LTE 1.

2. Indefinitely, 8 dB PAR, 88% duty cycle, +100°C, 1CH LTE

20s, 8 dB PAR, 80% duty cycle, +100°C, 1CH LTE 3.

Operation of this device outside the parameter ranges

given above may cause permanent damage.

#### **Electrical Specifications**

Test conditions unless otherwise noted:  $V_{CC}$  = +5.0 V, Temp. = +25 °C, 50  $\Omega$  system

#### Parameter Conditions Min Max Units Typ **Operational Frequency Range** 2300 2700 MHz 2595 MHz **Test Frequency** Rx mode, high gain mode 31 33 dB Gain 22 24 Rx mode, low gain mode dB Gain Flatness Rx mode, 2.3-2.4 GHz or 2.5-2.7 GHz 0.4 dB Rx mode, high gain mode 1.2 1.4 dB Noise Figure 1.7 1.5 dB Rx mode, low gain mode Rx mode, high gain mode -3.0 1.0 dBm Input IP3 Rx mode, low gain mode 8 dBm -10 dBm Rx mode, high gain mode Input P1dB Rx mode, low gain mode -4 dBm 20 Input Return Loss Rx mode, ANT port 16 dB **Output Return Loss** Rx mode, high gain mode, Rx Out port 13 dB 55 **Reverse Isolation** Rx mode dB Tx mode 0.5 1.0 dB Insertion Loss Input P0.1dB Tx mode 47.6 dBm Tx mode, ANT and TERM ports dB **Return Loss** 15 Rx mode 250 300 mΑ **Operating Current** Tx mode 140 180 mΑ

**Thermal Resistance** 

Notes:

Switching Time (ANT to Rx Out)

In Band Spurious Emission (5)

Out of Band Emissions (7)

5. Pin is a CW signal swept from 2.3 to 2.7GHz. Spec refers to any spurious mixing product that occurs from 2.3 to 2.7GHz.

50% of CTL to 10% / 90% of RF Output

Rx Mode at Rx out with Pin = -49dBm <sup>(6)</sup>

Rx Mode at Rx out from DC to 12275MHz

Recommend to follow Qorvo EVB layout for lowest spur level any deviation can increase spur level. 6.

7 Measure Pout with IBW = 4.5Mhz over frequency range with no input power applied.

Rx mode

Tx mode

uS

dBc

dBm

°C/W

°C/W

#### **Recommended Operating Conditions**

| Parameter                                         | Min   | Тур | Мах   | Units |
|---------------------------------------------------|-------|-----|-------|-------|
| Vcc                                               | +4.75 | +5  | +5.25 | V     |
| T/R Mode Low Voltage                              | 0     |     | 0.8   | V     |
| T/R Mode High Voltage                             | 2.0   |     | 3.6   | V     |
| T <sub>CASE</sub>                                 | -40   |     | +105  | °C    |
| Tj for >10 <sup>6</sup> hours MTTF <sup>(4)</sup> |       |     | +190  | °C    |

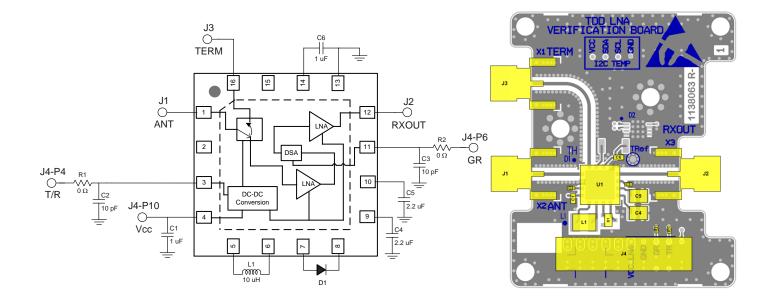
Notes:

4. For Rx Mode operation

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

1.1

-85


-59

30

22

#### QPC9314 High Power Switch LNA Module

#### **Application Circuit Schematic and Layout**



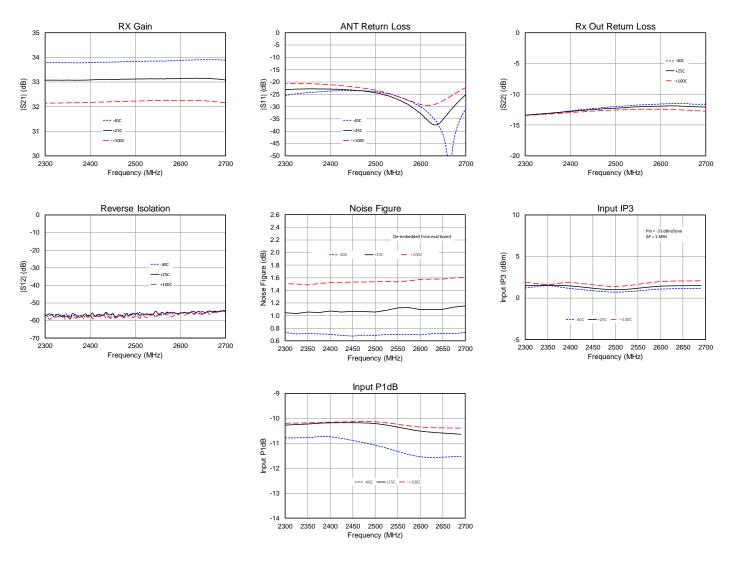
#### **Bill of Material**

| Ref Des | s Value Description |                                        | Manuf.  | Part Number       |
|---------|---------------------|----------------------------------------|---------|-------------------|
| n/a     | n/a                 | Printed Circuit Board                  |         |                   |
| U1      | n/a                 | High Power Switch LNA Module           | Qorvo   | QPC9314           |
| R1, R2  | 0 Ω                 | Resistor, Chip, 0402, 5%               | Various |                   |
| C1, C6  | 1 uF                | Capacitor, Chip, 0603, 20%, X7R        | Various |                   |
| C2, C3  | 10 pF               | Capacitor, Chip, 0402, NPO/COG, 5%     | Various |                   |
| C4, C5  | 2.2 uF              | Capacitor, Chip, 1210, 100 V, 10%, X7R | Various |                   |
| D1      | n/a                 | Diode 200 V 200 mA SOT23               | Various |                   |
| L1      | 10 uH               | Inductor, Power, 10 uH, 20%, 0.84 A    | TDK     | VLCF4020T-100MR85 |

#### Logic Table

| Parameter | High        | Low          |
|-----------|-------------|--------------|
| T/R       | Rx Mode     | Tx Mode      |
| GR        | Rx Low Gain | Rx High Gain |

#### **Typical Performance – Rx Mode (High Gain)**


| Parameter         | Conditions <sup>(1)</sup>             | Typical Value |       |       | Units |  |
|-------------------|---------------------------------------|---------------|-------|-------|-------|--|
| Frequency         |                                       | 2300          | 2500  | 2700  | MHz   |  |
| Gain              |                                       | 33            | 33    | 33    | dB    |  |
| Input IP3         | Pin = -33 dBm/tone, Δf=1 MHz          | +1.5          | +1.0  | +1.5  | dBm   |  |
| Input P1dB        |                                       | -10.2         | -10.2 | -10.7 | dBm   |  |
| Noise Figure      | De-embedded from Evaluation board PCB | 1.1           | 1.1   | 1.2   | dB    |  |
| Return Loss       | ANT port                              | 20            | 20    | 20    | dB    |  |
| Return Loss       | Rx Out port                           | 13            | 12    | 12    | dB    |  |
| Reverse Isolation | Rx Out to ANT port                    | 56            | 55    | 54    | dB    |  |

Notes:

1. Test conditions unless otherwise noted:  $V_{CC}$  = +5.0 V, T/R = 3 V, GR = 0 V, Temp. = +25 °C

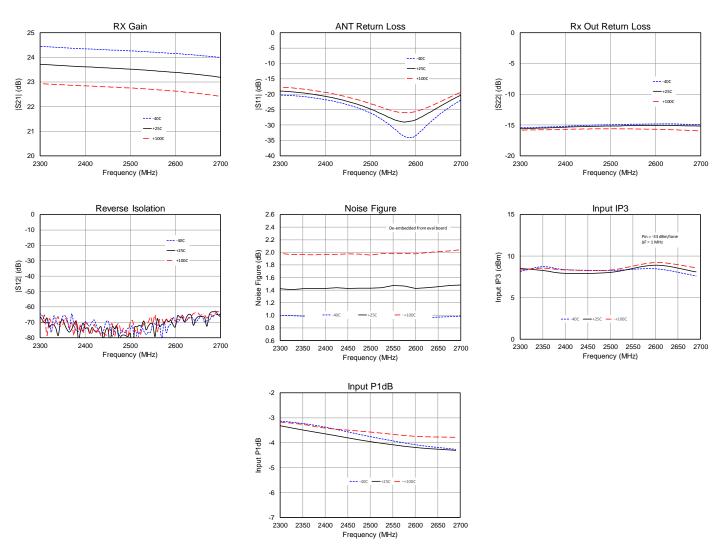
### Performance Plots – Rx Mode (High Gain)

Test conditions unless otherwise noted: V<sub>CC</sub> = +5.0 V, T/R = 3 V, GR = 0 V; Temp.= +25 °C



#### QPC9314 High Power Switch LNA Module

#### **Typical Performance – Rx Mode (Low Gain)**


| Parameter         | Conditions <sup>(1)</sup>             | Typical Value |      |      | Units |
|-------------------|---------------------------------------|---------------|------|------|-------|
| Frequency         |                                       | 2300          | 2500 | 2700 | MHz   |
| Gain              |                                       | 23.7          | 23.5 | 23.2 | dB    |
| Input IP3         | Pin = -33 dBm/tone, Δf=1 MHz          | +7.8          | +7.7 | +7.7 | dBm   |
| Input P1dB        |                                       | -3.3          | -4.0 | -4.3 | dBm   |
| Noise Figure      | De-embedded from Evaluation board PCB | 1.4           | 1.4  | 1.5  | dB    |
| Return Loss       | ANT port                              | 19            | 20   | 20   | dB    |
| Return Loss       | Rx Out port                           | 15            | 15   | 15   | dB    |
| Reverse Isolation | Rx Out to ANT port                    | 65            | 70   | 62   | dB    |

Notes:

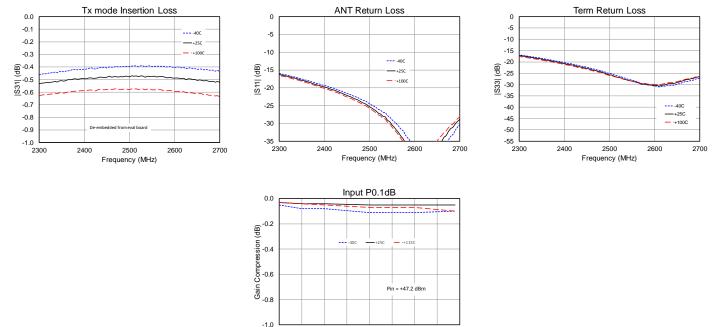
1. Test conditions unless otherwise noted:  $V_{CC}$  = +5.0 V, T/R = 3 V, GR = 3 V, Temp. = +25 °C

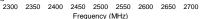
#### Performance Plots – Rx Mode (Low Gain)

Test conditions unless otherwise noted: V<sub>CC</sub> = +5.0 V, T/R = 3 V, GR = 3 V; Temp.= +25 °C



#### **Typical Performance – Tx Mode**


| Parameter         | Conditions <sup>(1)</sup> Typical Value |      |      | ie   | Units |
|-------------------|-----------------------------------------|------|------|------|-------|
| Frequency         |                                         | 2300 | 2500 | 2700 | MHz   |
| Insertion Loss    | De-embedded from Evaluation board PCB   | 0.5  | 0.5  | 0.5  | dB    |
| Input Compression | Pin = +47.2 dBm                         | 0.05 | 0.07 | 0.07 | dB    |
| Return Loss       | ANT port                                | 16   | 20   | 20   | dB    |
| Return Loss       | TERM port                               | 17   | 20   | 20   | dB    |

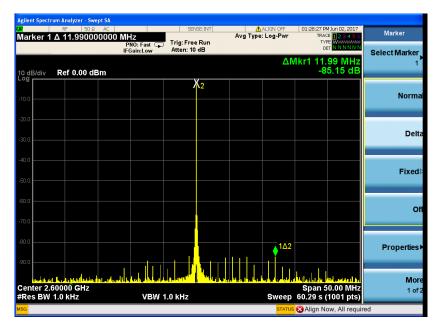

Notes:

1. Test conditions unless otherwise noted:  $V_{CC}$  = +5.0 V, T/R = 0 V, GR = 0 V, Temp. = +25 °C

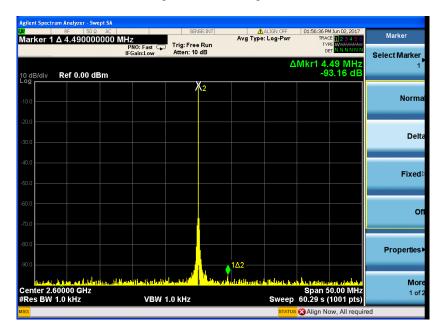
#### **Performance Plots – Tx Mode**

Test conditions unless otherwise noted: V<sub>CC</sub> = +5.0 V, T/R = 0 V, GR = 0 V; Temp.= +25 °C. Evaluation board PCB loss = 0.3dB.





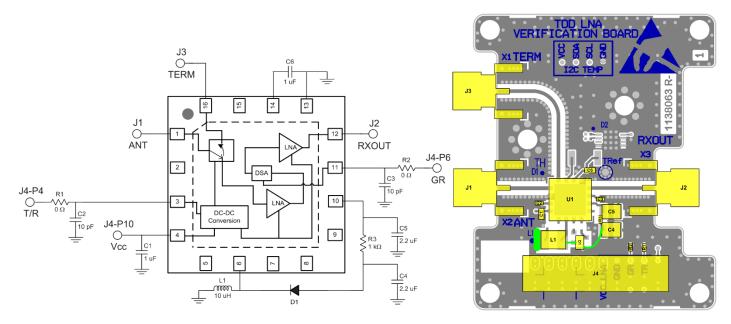

#### **Application Circuit for Reduced Spurious**


This section describes an alternative way to route the DC-DC converter signals for further improvement of in-band spurious emissions.

#### **Spurious Performance – Modified PCB**

Test conditions unless otherwise noted: V<sub>CC</sub> = +5.0 V, T/R = 0 V, RFin = -35dBm CW; Temp.= +25 °C




#### **Original PCB Configuration**



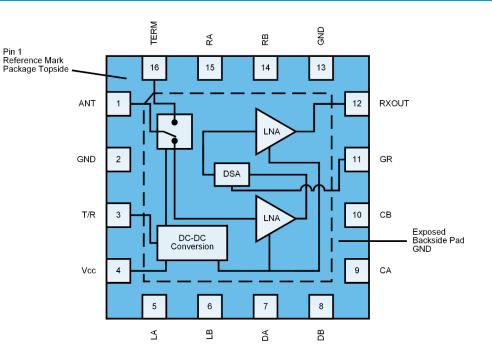
Modified PCB Configuration

#### QPC9314 High Power Switch LNA Module

#### **Application Circuit Schematic and Layout – Modified PCB**



Note:

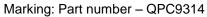

R3 is the only additional component. All other parts are same as unmodified Evaluation Board

#### **Bill of Material – Modified PCB**

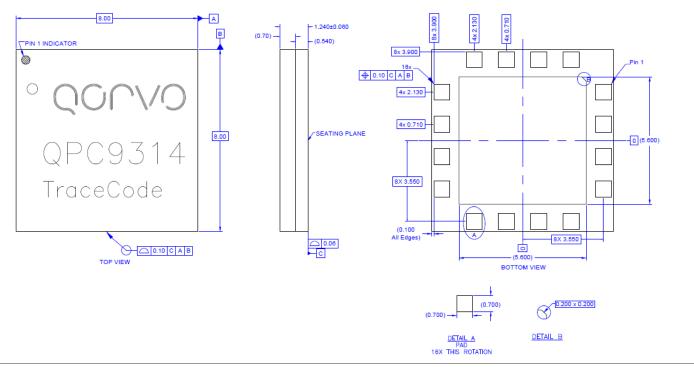
| Ref Des | Value  | Description                            | Manuf.  | Part Number       |
|---------|--------|----------------------------------------|---------|-------------------|
| n/a     | n/a    | Printed Circuit Board                  |         |                   |
| U1      | n/a    | High Power Switch LNA Module           | Qorvo   | QPB9325           |
| R1, R2  | 0 Ω    | Resistor, Chip, 0402, 5%               | Various |                   |
| C1, C6  | 1 uF   | Capacitor, Chip, 0603, 20%, X7R        | Various |                   |
| C2, C3  | 10 pF  | Capacitor, Chip, 0402, NPO/COG, 5%     | Various |                   |
| C4, C5  | 2.2 uF | Capacitor, Chip, 1210, 100 V, 10%, X7R | Various |                   |
| D1      | n/a    | Diode 200 V 200 mA SOT23               | Various |                   |
| L1      | 10 uH  | Inductor, Power, 10 uH, 20%, 0.84 A    | TDK     | VLCF4020T-100MR85 |
| R3      | 1 kΩ   | Resistor, Chip, 0402, 5%               | Various |                   |

#### QPC9314 High Power Switch LNA Module

#### **Pin Configuration and Description**




#### Top View


| Pin No.       | Label                                                                                                                                                                           | Description                                                       |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1             | ANT                                                                                                                                                                             | RF antenna input/output port 50 ohms.                             |
| 2, 13, 14, 15 | NC                                                                                                                                                                              | No Connection.                                                    |
| 3             | T/R                                                                                                                                                                             | Switch Control, Tx mode Low state, Rx mode High state.            |
| 4             | Vcc                                                                                                                                                                             | DC Power Supply Voltage.                                          |
| 5             | LA                                                                                                                                                                              | External inductor connection for internal power supply.           |
| 6             | LB                                                                                                                                                                              | External inductor connection for internal power supply.           |
| 7             | DA                                                                                                                                                                              | External diode anode connection for internal power supply.        |
| 8             | DB                                                                                                                                                                              | External diode cathode connection for internal power supply.      |
| 9             | CA                                                                                                                                                                              | External bypass capacitor connection.                             |
| 10            | СВ                                                                                                                                                                              | External bypass capacitor connection.                             |
| 11            | GR                                                                                                                                                                              | Rx mode Gain control, High = Low gain mode, Low = High gain mode. |
| 12            | Rx OUT                                                                                                                                                                          | RF LNA output port 50 ohms.                                       |
| 16            | TERM                                                                                                                                                                            | RF termination port 50 ohms.                                      |
| Backside Pad  | e Pad GND Ground connection. The back side of the package should be connected to ground plan though as short of a connection as possible. PCB via holes un device are required. |                                                                   |

#### QPC9314 High Power Switch LNA Module

#### **Package Marking and Dimensions**



Trace Code – Assigned by assembly sub-contractor



Notes:

- 1. All dimensions are in microns. Angles are in degrees.
- 2. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.



#### QPC9314 High Power Switch LNA Module

#### Handling Precautions

| Parameter                      | Rating   | Standard                 |                      |
|--------------------------------|----------|--------------------------|----------------------|
| ESD-Human Body Model (HBM)     | Class 1C | ESDA / JEDEC JS-001-2012 | Caution!             |
| ESD-Charged Device Model (CDM) | Class C3 | JEDEC JESD22-C101F       | ESD-Sensitive Device |
| MSL-Moisture Sensitivity Level | Level 3  | IPC/JEDEC J-STD-020      |                      |

#### **Solderability**

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: Electrolytic plated Au over Ni

#### **RoHS Compliance**

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Product uses RoHS Exemption 7c-I to meet RoHS Compliance requirements.
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C<sub>15</sub>H<sub>12</sub>Br<sub>4</sub>0<sub>2</sub>) Free
- PFOS Free
- SVHC Free

#### **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>

Tel: 1-844-890-8163

Email: customer.support@gorvo.com

For technical questions and application information:

Email: appsupport@qorvo.com

#### **Important Notice**

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2018 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ MAX2371EVKIT# 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1