

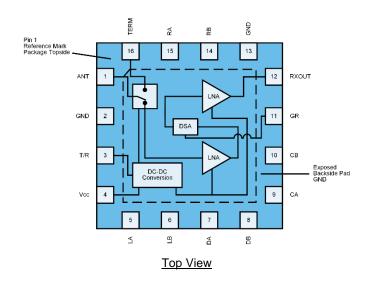
QPC9314 High Power Switch LNA Module

Product Overview

The Qorvo® QPC9314 is a highly integrated front-end module targeted for TDD macro or picocell base stations. The LNA switch module integrates RF functional blocks such as a pin-diode based high power switch capable of handling up to 52 W with an LTE signal (8 dB PAR) along with two LNA stages, and a 1-bit DSA to provide a high and low gain mode. Further integration is also implemented where the pin diode driver and dc-dc converter circuits are implemented inside the module to enable only the need for an external 5 V power supply. The control voltage for the switch and gain control. mode is with 3.3 V logic.

The QPC9314 can be utilized across the 2.3-2.7 GHz range to provide 1.2 dB noise figure for operation in the receive mode and 0.5 dB insertion loss in the transmit mode. The LNAs utilize Qorvo's high performance E-pHEMT process while the switch allows for power levels up to 330 W peak power to be routed to an external load termination.

The QPC9314 is packaged in a RoHS-compliant, compact 8x8 mm surface-mount leadless package. The switch LNA module is targeted for wireless infrastructure applications configured for TDD-based architectures.


QOCYO QPC9314

16 Pin 8 mm x 8 mm leadless SMT Package

Key Features

- 2.3-2.7 GHz frequency range
- Integrates a high power switch, two LNA stages, a 1-bit DSA, pin diode driver circuits, and dc converter
- Ideal for TDD systems with an isolator
- Only requires a 5 V supply with 3.3 V logic Ctrl.
- Max RF Input power: 52 W Pavg (8 dB PAR)
- 33 or 24 dB gain (Rx high and Rx low gain mode)
- 1.2 dB noise figure
- +33 dBm OIP3 (Rx mode)
- 0.65 dB Insertion Loss (Tx mode)
- · Compact package size, 8x8 mm

Functional Block Diagram

Applications

- Wireless Infrastructure
- Macro or picocell base stations
- TDD-based architectures

Ordering Information

Part No.	Description
QPC9314TR13	2500 pcs on a 13" reel
QPC9314SR	100 pcs on a 7" reel
QPC9314EVB	Evaluation board

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-50 to 150 °C
Max Operating Temperature	+115 °C
Vcc	+6 V
RF at ANT (Tx Mode) (1)	+47.2 dBm
RF at ANT (Tx Mode) (2)	+44.2 dBm
RF at ANT (Tx Mode) (3)	+46.0 dBm
RF at ANT (Rx Mode) (2)	+20 dBm

Notes:

- 1. 10s, 8 dB PAR, 88% duty cycle, +100°C, 1CH LTE
- 2. Indefinitely, 8 dB PAR, 88% duty cycle, +100°C, 1CH LTE
- 3. 20s, 8 dB PAR, 80% duty cycle, +100°C, 1CH LTE

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

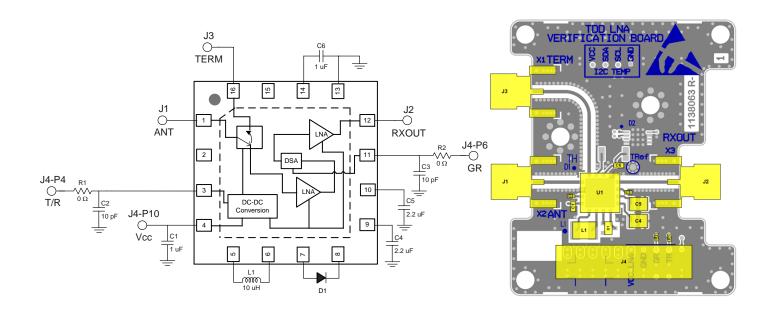
Parameter	Min	Тур	Max	Units
Vcc	+4.75	+5	+5.25	V
T/R Mode Low Voltage	0		0.8	V
T/R Mode High Voltage	2.0		3.6	V
T _{CASE}	-40		+105	°C
Tj for >10 ⁶ hours MTTF ⁽⁴⁾			+190	°C

Notes:

4. For Rx Mode operation

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications


Test conditions unless otherwise noted: V					
Parameter	Conditions	Min	Тур	Max	Units
Operational Frequency Range		2300		2700	MHz
Test Frequency			2595		MHz
Gain	Rx mode, high gain mode	31	33		dB
Gain	Rx mode, low gain mode	22	24		dB
Gain Flatness	Rx mode, 2.3-2.4 GHz or 2.5-2.7 GHz		0.4		dB
Noise Figure	Rx mode, high gain mode		1.2	1.4	dB
Noise Figure	Rx mode, low gain mode		1.5	1.7	dB
January IDO	Rx mode, high gain mode	-3.0	1.0		dBm
Input IP3	Rx mode, low gain mode		8		dBm
Innut D1 dD	Rx mode, high gain mode		-10		dBm
Input P1dB	Rx mode, low gain mode		-4		dBm
Input Return Loss	Rx mode, ANT port	16	20		dB
Output Return Loss	Rx mode, high gain mode, Rx Out port		13		dB
Reverse Isolation	Rx mode		55		dB
Insertion Loss	Tx mode		0.5	1.0	dB
Input P0.1dB	Tx mode		47.6		dBm
Return Loss	Tx mode, ANT and TERM ports		15		dB
On a ratio at Commont	Rx mode		250	300	mA
Operating Current	Tx mode		140	180	mA
Switching Time (ANT to Rx Out)	50% of CTL to 10% / 90% of RF Output		1.1		uS
In Band Spurious Emission (5)	Rx Mode at Rx out with Pin = -49dBm (6)		-85		dBc
Out of Band Emissions (7)	Rx Mode at Rx out from DC to 12275MHz		-59		dBm
The word Decistors	Rx mode			30	°C/W
Thermal Resistance	Tx mode			22	°C/W

Notes:

- 5. Pin is a CW signal swept from 2.3 to 2.7GHz. Spec refers to any spurious mixing product that occurs from 2.3 to 2.7GHz.
- 6. Recommend to follow Qorvo EVB layout for lowest spur level any deviation can increase spur level.
- 7. Measure Pout with IBW = 4.5Mhz over frequency range with no input power applied.

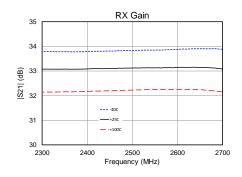
Application Circuit Schematic and Layout

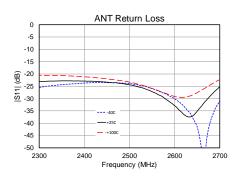
Bill of Material

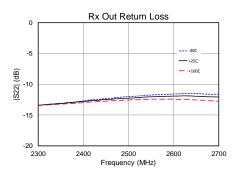
Ref Des	Value	Description	Manuf.	Part Number
n/a	n/a	Printed Circuit Board		
U1	n/a	High Power Switch LNA Module	Qorvo	QPC9314
R1, R2	0 Ω	Resistor, Chip, 0402, 5%	Various	
C1, C6	1 uF	Capacitor, Chip, 0603, 20%, X7R	Various	
C2, C3	10 pF	Capacitor, Chip, 0402, NPO/COG, 5%	Various	
C4, C5	2.2 uF	Capacitor, Chip, 1210, 100 V, 10%, X7R	Various	
D1	n/a	Diode 200 V 200 mA SOT23	Various	
L1	10 uH	Inductor, Power, 10 uH, 20%, 0.84 A	TDK	VLCF4020T-100MR85

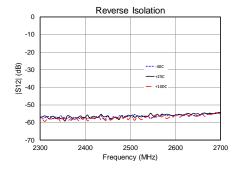
Logic Table

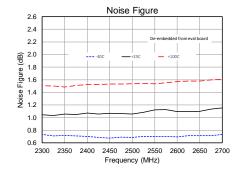
Parameter	High	Low
T/R	Rx Mode	Tx Mode
GR	Rx Low Gain	Rx High Gain

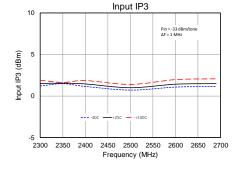

Typical Performance - Rx Mode (High Gain)

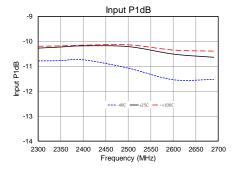

Parameter	Conditions (1)	Typical Value			Units
Frequency		2300	2500	2700	MHz
Gain		33	33	33	dB
Input IP3	Pin = -33 dBm/tone, Δf=1 MHz	+1.5	+1.0	+1.5	dBm
Input P1dB		-10.2	-10.2	-10.7	dBm
Noise Figure	De-embedded from Evaluation board PCB	1.1	1.1	1.2	dB
Return Loss	ANT port	20	20	20	dB
Return Loss	Rx Out port	13	12	12	dB
Reverse Isolation	Rx Out to ANT port	56	55	54	dB


Notes:

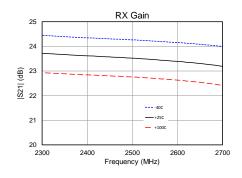

Performance Plots – Rx Mode (High Gain)

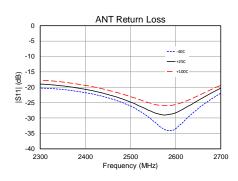

Test conditions unless otherwise noted: Vcc = +5.0 V, T/R = 3 V, GR = 0 V; Temp.= +25 °C

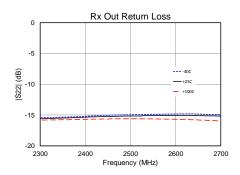


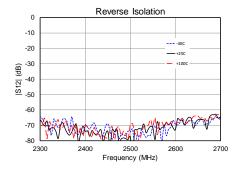


^{1.} Test conditions unless otherwise noted: $V_{CC} = +5.0 \text{ V}$, T/R = 3 V, GR = 0 V, $Temp. = +25 ^{\circ}C$

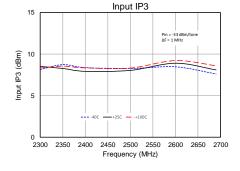

Typical Performance – Rx Mode (Low Gain)

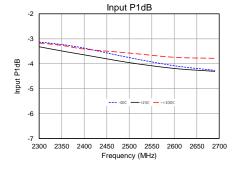

Parameter	Conditions (1)	Typical Value		Units	
Frequency		2300	2500	2700	MHz
Gain		23.7	23.5	23.2	dB
Input IP3	Pin = -33 dBm/tone, Δf=1 MHz	+7.8	+7.7	+7.7	dBm
Input P1dB		-3.3	-4.0	-4.3	dBm
Noise Figure	De-embedded from Evaluation board PCB	1.4	1.4	1.5	dB
Return Loss	ANT port	19	20	20	dB
Return Loss	Rx Out port	15	15	15	dB
Reverse Isolation	Rx Out to ANT port	65	70	62	dB


Notes:

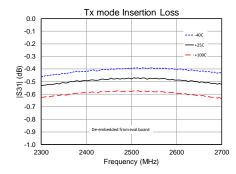

Performance Plots – Rx Mode (Low Gain)

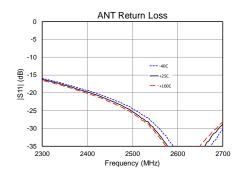

Test conditions unless otherwise noted: Vcc = +5.0 V, T/R = 3 V, GR = 3 V; Temp.= +25 °C

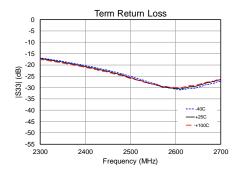


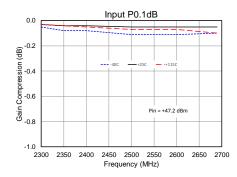


^{1.} Test conditions unless otherwise noted: $V_{CC} = +5.0 \text{ V}$, T/R = 3 V, GR = 3 V, $Temp. = +25 ^{\circ}C$


Typical Performance – Tx Mode

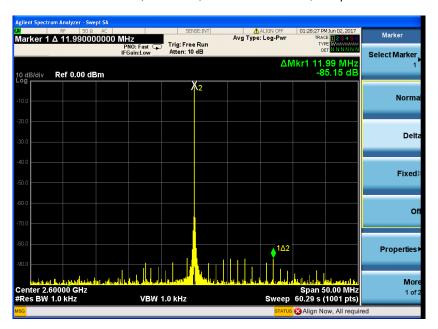

Parameter	Conditions (1)	Typical Value			Units
Frequency		2300	2500	2700	MHz
Insertion Loss	De-embedded from Evaluation board PCB	0.5	0.5	0.5	dB
Input Compression	Pin = +47.2 dBm	0.05	0.07	0.07	dB
Return Loss	ANT port	16	20	20	dB
Return Loss	TERM port	17	20	20	dB


Notes:

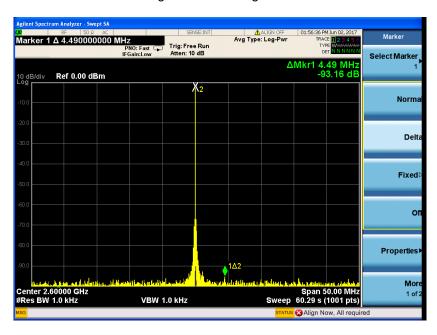

Performance Plots - Tx Mode

Test conditions unless otherwise noted: $V_{CC} = +5.0 \text{ V}$, T/R = 0 V, GR = 0 V; T/R = 0 V, $T/R = 0 \text{$

^{1.} Test conditions unless otherwise noted: $V_{CC} = +5.0 \text{ V}$, T/R = 0 V, GR = 0 V, $Temp. = +25 ^{\circ}C$

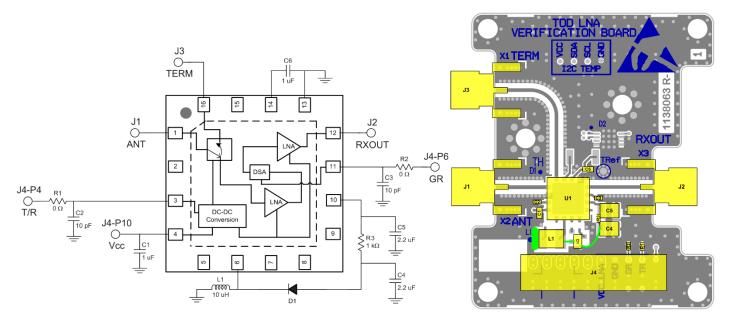


Application Circuit for Reduced Spurious


This section describes an alternative way to route the DC-DC converter signals for further improvement of in-band spurious emissions.

Spurious Performance – Modified PCB

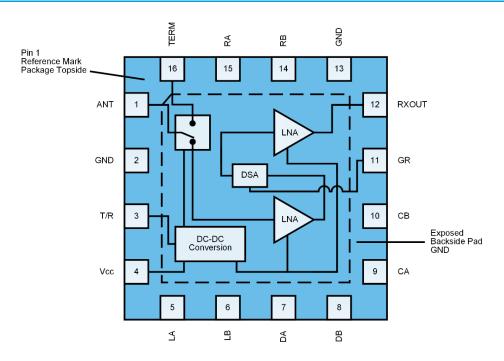
Test conditions unless otherwise noted: Vcc = +5.0 V, T/R = 0 V, RFin = -35dBm CW; Temp.= +25 °C


Original PCB Configuration

Modified PCB Configuration

Application Circuit Schematic and Layout – Modified PCB

Note:

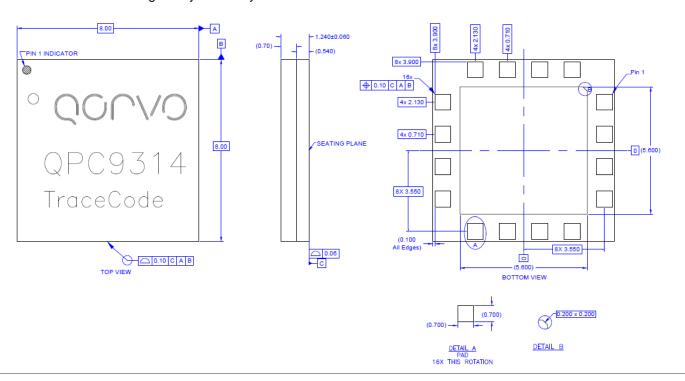

R3 is the only additional component. All other parts are same as unmodified Evaluation Board

Bill of Material - Modified PCB

Ref Des	Value	Description	Manuf.	Part Number
n/a	n/a	Printed Circuit Board		
U1	n/a	High Power Switch LNA Module	Qorvo	QPB9325
R1, R2	0 Ω	Resistor, Chip, 0402, 5%	Various	
C1, C6	1 uF	Capacitor, Chip, 0603, 20%, X7R Various		
C2, C3	10 pF	Capacitor, Chip, 0402, NPO/COG, 5%	Various	
C4, C5	2.2 uF	Capacitor, Chip, 1210, 100 V, 10%, X7R Various		
D1	n/a	Diode 200 V 200 mA SOT23 Various		
L1	10 uH	Inductor, Power, 10 uH, 20%, 0.84 A TDK		VLCF4020T-100MR85
R3	1 kΩ	Resistor, Chip, 0402, 5%	Various	

Pin Configuration and Description

Top View


Pin No.	Label	Description
1	ANT	RF antenna input/output port 50 ohms.
2, 13, 14, 15	NC	No Connection.
3	T/R	Switch Control, Tx mode Low state, Rx mode High state.
4	Vcc	DC Power Supply Voltage.
5	LA	External inductor connection for internal power supply.
6	LB	External inductor connection for internal power supply.
7	DA	External diode anode connection for internal power supply.
8	DB	External diode cathode connection for internal power supply.
9	CA	External bypass capacitor connection.
10	СВ	External bypass capacitor connection.
11	GR	Rx mode Gain control, High = Low gain mode, Low = High gain mode.
12	Rx OUT	RF LNA output port 50 ohms.
16	TERM	RF termination port 50 ohms.
Backside Pad	GND	Ground connection. The back side of the package should be connected to the ground plan though as short of a connection as possible. PCB via holes under the device are required.

Package Marking and Dimensions

Marking: Part number - QPC9314

Trace Code - Assigned by assembly sub-contractor

Notes:

- 1. All dimensions are in microns. Angles are in degrees.
- Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

Handling Precautions

Parameter	Rating	Standard
ESD-Human Body Model (HBM)	Class 1C	ESDA / JEDEC JS-001-2012
ESD - Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020

Caution! ESD-Sensitive Device

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Product uses RoHS Exemption 7c-I to meet RoHS Compliance requirements.
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u> Tel: 1-844-890-8163

Email: customer.support@gorvo.com

For technical questions and application information:

Email: appsupport@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2018 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Front End category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

SE2622L-R BGM1032N7E6327XUSA1 LX5586LL LX5586HLL LX5586HLL SKY66111-21 SKY65728-11 SKY68000-31 SKY85308-11 SKY85302-11 SKY65724-11 ADTR1107ACCZ LMP91051MTX/NOPB SE5501L-R QPF4519SR SE5503A-R ADA8282WBCPZ ADRF5545ABCPZN ADRF5545ABCPZN-R7 AD8283WBCPZ AD8284WCSVZ ADRF5547BCPZN ADRF5547BCPZN-R7 ADRF5549BCPZN ADRF5549BCPZN-R7 HV7350K6-G SE5516A-R MCP2030-I/SL MAX2009ETI+ MAX2078CTK+ MAX2335ETI+ MAX2678GTB/V+T MD2131K7-G MD2134K7-G RFFM6903TR13 HV7351K6-G MCP2035-I/ST SE2614BT-R SE2438T-R SST12LF02-QXCE SST12LF09-Q3CE RFX2401C RFX2402E SKY85201-11 RFFM4591FTR7 RFFM8211TR7 RFFM4293TR7 RFFM4203TR7 RFFM5765QTR7 RFFM8200TR7