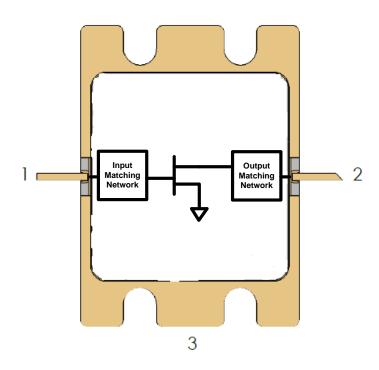


#### **Product Overview**


The QPD1003 is a 500 W ( $P_{3dB}$ ) internally matched discrete GaN on SiC HEMT which operates from 1.2 to 1.4 GHz and a 50V supply rail. The device is GaN IMFET fully matched to 50  $\Omega$  in an industry standard air cavity package and is ideally suited for military and civilian radar. The device can support pulsed and linear operations.



ROHS compliant.

Evaluation boards are available upon request.

### **Functional Block Diagram**



#### **Key Features**

Frequency: 1.2 to 1.4 GHz
Output Power (P<sub>3dB</sub>)<sup>1</sup>: 540 W

Linear Gain¹: 19.9 dB
Typical PAE<sub>3dB</sub>¹: 66.7%
Operating Voltage: 50 V

• Low thermal resistance package

Pulse capable
 Note 1: @ 1.3 GHz

## **Applications**

Military radar

Civilian radar

| Part No.      | Description          |
|---------------|----------------------|
| QPD1003       | 1.2-1.4 GHz RF IMFET |
| QPD1003PCB401 | 1.2 – 1.4 GHz EVB    |



### **Absolute Maximum Ratings<sup>1</sup>**

| Parameter                                             | Rating      | Units |
|-------------------------------------------------------|-------------|-------|
| Breakdown Voltage,BV <sub>DG</sub>                    | +145        | V     |
| Gate Voltage Range, V <sub>G</sub>                    | -7 to +2    | V     |
| Drain Current, IDMAX                                  | 20          | Α     |
| Gate Current Range, I <sub>G</sub>                    | See page 4. | mA    |
| Power Dissipation, 10% DC 1 mS PW, P <sub>DISS</sub>  | 410         | W     |
| RF Input Power, 10% DC<br>1 mS PW, 1.3 GHz, T = 25 °C | +42         | dBm   |
| Mounting Temperature (30 Seconds)                     | 320         | °C    |
| Storage Temperature                                   | −65 to +150 | °C    |

#### Notes:

 Operation of this device outside the parameter ranges given above may cause permanent damage.

## Recommended Operating Conditions<sup>1</sup>

| Parameter                                                   | Min | Тур  | Max | Units |
|-------------------------------------------------------------|-----|------|-----|-------|
| Operating Temp. Range                                       | -40 | +25  | +85 | °C    |
| Drain Voltage Range, V <sub>D</sub>                         | +28 | +50  | +55 | V     |
| Drain Bias Current, IDQ                                     | _   | 750  | _   | mA    |
| Drain Current, I <sub>D</sub>                               | _   | 15   | _   | Α     |
| Gate Voltage, V <sub>G</sub> <sup>4</sup>                   | _   | -2.8 | _   | V     |
| Power Dissipation, Pulsed (P <sub>D</sub> ) <sup>2, 3</sup> | _   | _    | 370 | W     |

#### Notes:

- Electrical performance is measured under conditions noted in the electrical specifications table. Specifications are not guaranteed over all recommended operating conditions.
- 2. Package base at 85 °C
- 3. Pulse Width = 1 mS, Duty Cycle = 10%
- 4. To be adjusted to desired  $I_{DQ}$

#### Pulsed Characterization - Load-Pull Performance - Power Tuned<sup>1</sup>

| Parameters                                                          |      | Typical Values |      | Unit |
|---------------------------------------------------------------------|------|----------------|------|------|
| Frequency, F                                                        | 1.2  | 1.3            | 1.4  | GHz  |
| Linear Gain, G <sub>LIN</sub>                                       | 19   | 19.9           | 18.6 | dB   |
| Output Power at 3dB compression point, P <sub>3dB</sub>             | 57.3 | 57.3           | 57   | dBm  |
| Power-Added-Efficiency at 3dB compression point, PAE <sub>3dB</sub> | 55.1 | 57.6           | 56.9 | %    |
| Gain at 3dB compression point                                       | 16   | 16.9           | 15.6 | dB   |

#### Notes:

### Pulsed Characterization – Load-Pull Performance – Efficiency Tuned<sup>1</sup>

| Parameters                                                          | Typical Values |      |      | Unit |
|---------------------------------------------------------------------|----------------|------|------|------|
| Frequency, F                                                        | 1.2            | 1.3  | 1.4  | GHz  |
| Linear Gain, G <sub>LIN</sub>                                       | 20.3           | 20.6 | 19.4 | dB   |
| Output Power at 3dB compression point, P <sub>3dB</sub>             | 55.4           | 55.6 | 55.3 | dBm  |
| Power-Added-Efficiency at 3dB compression point, PAE <sub>3dB</sub> | 70.3           | 66.7 | 67.4 | %    |
| Gain at 3dB compression point, G <sub>3dB</sub>                     | 17.3           | 17.6 | 16.4 | dB   |

<sup>1.</sup> Test conditions unless otherwise noted:  $V_D = +50 \text{ V}$ ,  $I_{DQ} = 750 \text{ mA}$ , Temp = +25 °C

<sup>1.</sup> Test conditions unless otherwise noted:  $V_D = +50 \text{ V}$ ,  $I_{DQ} = 750 \text{ mA}$ , Temp =  $+25 \,^{\circ}\text{C}$ 

## QPD1003

## 500W, 50V, 1.2 - 1.4 GHz, GaN RF IMFET

#### RF Characterization – 1.2 – 1.4 GHz EVB Performance At 1.2 GHz<sup>1</sup>

| Parameter                                                           | Min | Тур  | Max | Units |
|---------------------------------------------------------------------|-----|------|-----|-------|
| Linear Gain, G <sub>LIN</sub>                                       | _   | 18.6 | _   | dB    |
| Output Power at 3dB compression point, P <sub>3dB</sub>             | _   | 57.1 | _   | dBm   |
| Power-Added Efficiency at 3dB compression point, PAE <sub>3dB</sub> | _   | 57.7 | _   | %     |
| Gain at 3dB compression point, G <sub>3dB</sub>                     | _   | 15.6 | _   | dB    |

#### Notes:

#### RF Characterization – 1.2 – 1.4 GHz EVB Performance At 1.3 GHz<sup>1</sup>

| Parameter                                                           | Min | Тур  | Max | Units |
|---------------------------------------------------------------------|-----|------|-----|-------|
| Linear Gain, G <sub>LIN</sub>                                       | _   | 19.8 | _   | dB    |
| Output Power at 3dB compression point, P <sub>3dB</sub>             | _   | 56.6 | _   | dBm   |
| Power-Added Efficiency at 3dB compression point, PAE <sub>3dB</sub> | _   | 62.0 | _   | %     |
| Gain at 3dB compression point, G <sub>3dB</sub>                     | _   | 16.8 | _   | dB    |

#### Notes:

#### RF Characterization – 1.2 – 1.4 GHz EVB Performance At 1.4 GHz<sup>1</sup>

| Parameter                                                           | Min | Тур  | Max | Units |
|---------------------------------------------------------------------|-----|------|-----|-------|
| Linear Gain, G <sub>LIN</sub>                                       | _   | 18.5 | _   | dB    |
| Output Power at 3dB compression point, P <sub>3dB</sub>             | _   | 56.4 | _   | dBm   |
| Power-Added Efficiency at 3dB compression point, PAE <sub>3dB</sub> | _   | 59.2 | _   | %     |
| Gain at 3dB compression point, G <sub>3dB</sub>                     | _   | 15.5 | _   | dB    |

#### Notes:

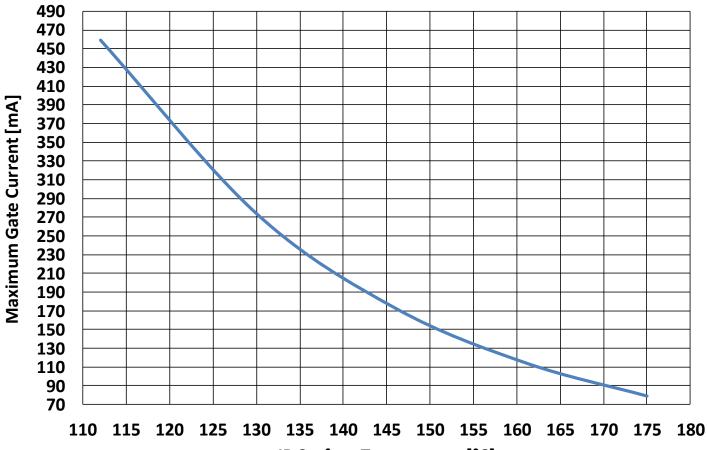
### RF Characterization – Mismatch Ruggedness at 1.3 GHz<sup>1</sup>

| Symbol | Parameter                     | dB Compression | Typical |
|--------|-------------------------------|----------------|---------|
| VSWR   | Impedance Mismatch Ruggedness | 3              | 5:1     |

#### lotes:

- 1. Test conditions unless otherwise noted: T<sub>A</sub> = 25 °C, V<sub>D</sub> = 50 V, I<sub>DQ</sub> = 750 mA, 1 mS PW, 10% DC
- 2. Driving input power is determined at pulsed compression under matched condition at EVB output connector.

<sup>1.</sup>  $V_D = +50 \text{ V}$ ,  $I_{DQ} = 750 \text{ mA}$ ,  $Temp = +25 ^{\circ}\text{C}$ , CW

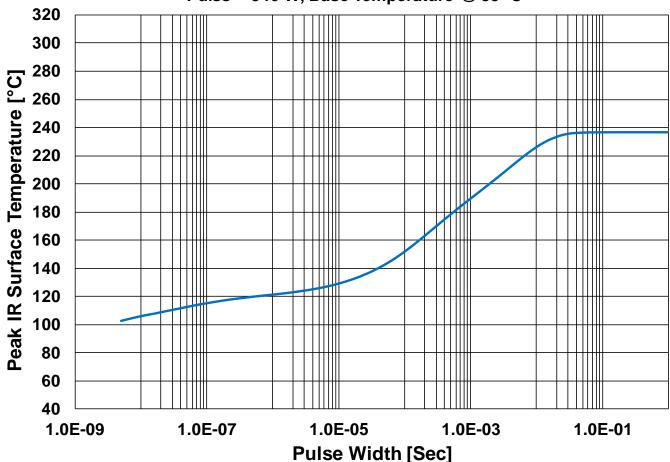

<sup>1.</sup>  $V_D = +50 \text{ V}$ ,  $I_{DQ} = 750 \text{ mA}$ ,  $Temp = +25 ^{\circ}\text{C}$ , CW

<sup>1.</sup>  $V_D = +50 \text{ V}$ ,  $I_{DQ} = 750 \text{ mA}$ ,  $Temp = +25 ^{\circ}\text{C}$ , CW



#### **Maximum Gate Current**

## **Maximum Gate Current Vs. IR Surface Temperature**



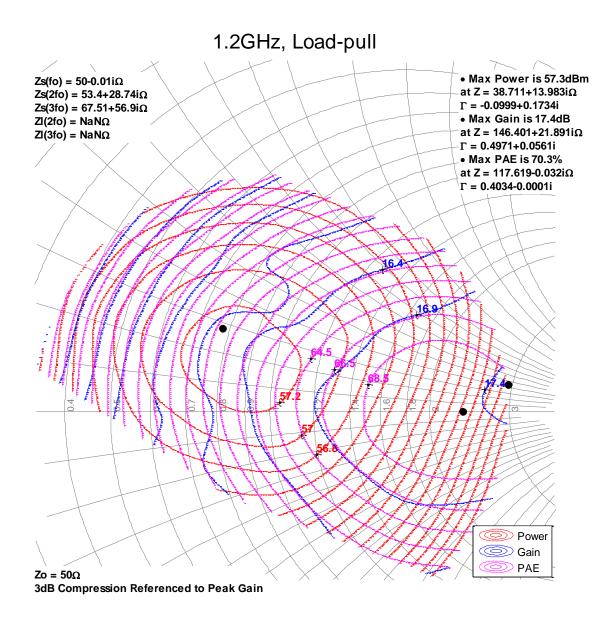

**IR Surface Temperature [°C]** 



### Thermal and Reliability Information - Pulsed

## Peak IR Surface Temperature vs. Pulse Width Pdiss = 346 W, Base Temperature @ 85 °C

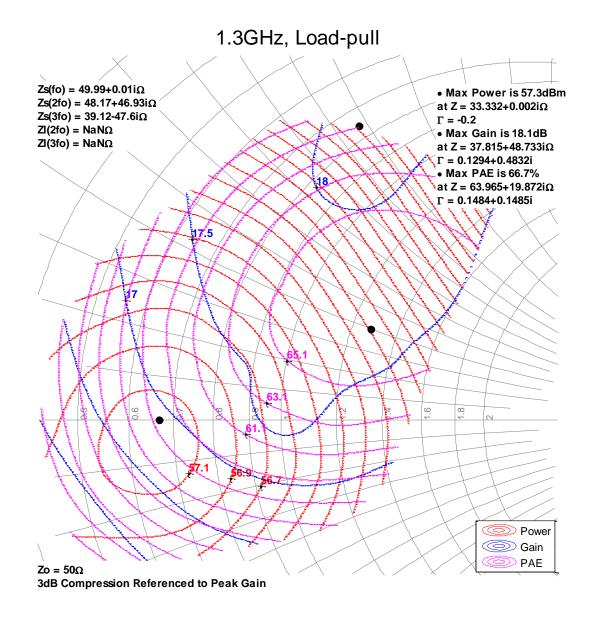



| Parameter                                                   | Conditions                   | Values | Units |
|-------------------------------------------------------------|------------------------------|--------|-------|
| Thermal Resistance, IR¹ (θ <sub>JC</sub> )                  | 85 °C back side temperature  | 0.30   | °C/W  |
| Peak IR Surface Temperature <sup>1</sup> (T <sub>CH</sub> ) | 346 W Pdiss, 1 mS PW, 10% DC | 189    | °C    |

<sup>&</sup>lt;sup>1</sup>Refer to the following document GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates



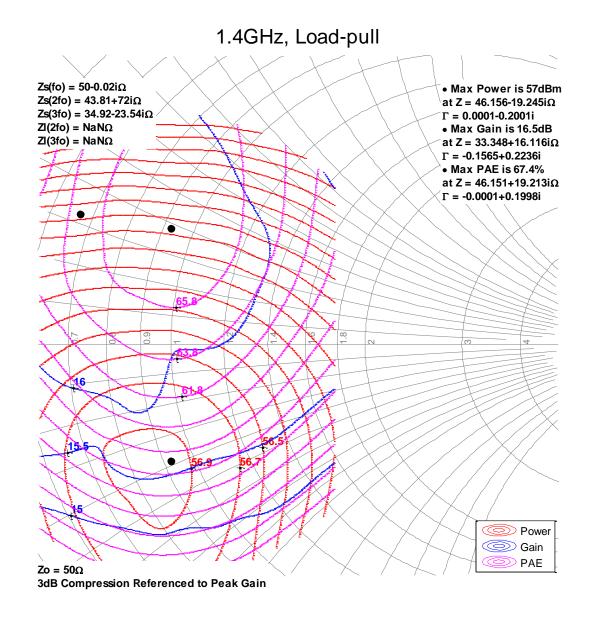
#### Load-Pull Smith Charts<sup>1, 2, 3</sup>


- 1. V<sub>D</sub> = 50 V, I<sub>DQ</sub> = 750 mA, 1 mS PW, 10% DC pulsed. Performance is at 3dB gain compression referenced to peak gain.
- 2. See page 13 for load-pull and source-pull reference planes. 50-Ω load-pull TRL fixtures are built with 20-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.





#### Load-Pull Smith Charts<sup>1, 2, 3</sup>

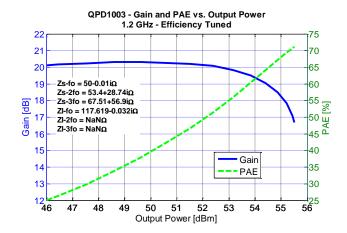

- 1. V<sub>D</sub> = 50 V, I<sub>DQ</sub> = 750 mA, 1 mS PW, 10% DC pulsed. Performance is at 3dB gain compression referenced to peak gain.
- 2. See page 13 for load-pull and source-pull reference planes. 50-Ω load-pull TRL fixtures are built with 20-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

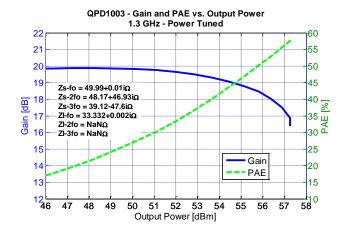


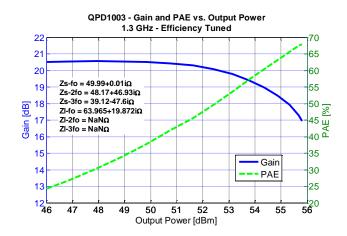


### Load-Pull Smith Charts<sup>1, 2, 3</sup>

- 1. V<sub>D</sub> = 50 V, I<sub>DQ</sub> = 750 mA, 1 mS PW, 10% DC pulsed. Performance is at 3dB gain compression referenced to peak gain.
- 2. See page 13 for load-pull and source-pull reference planes. 50-Ω load-pull TRL fixtures are built with 20-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.



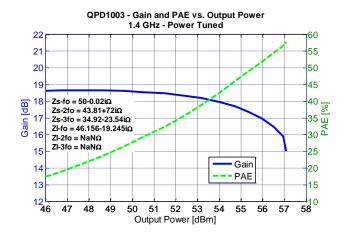



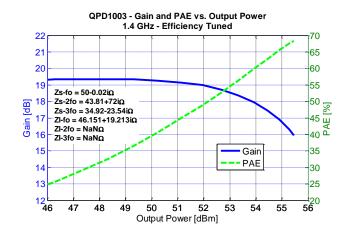


### Typical Performance – Load-Pull Drive-up<sup>1, 2</sup>

- 1. 1 mS PW, 10% DC pulsed signal,  $V_D = 50 \text{ V}$ ,  $I_{DQ} = 750 \text{ mA}$
- 2. See page 13 for load-pull and source-pull reference planes where the performance was measured.







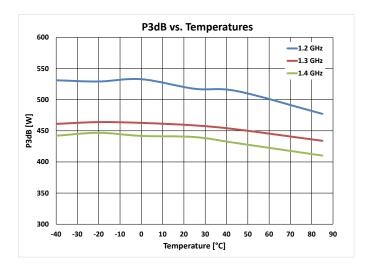



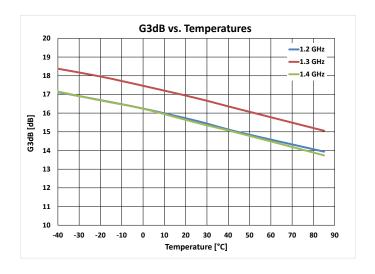


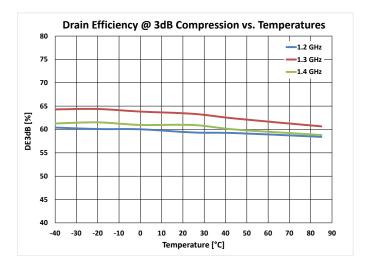

## Typical Performance – Load-Pull Drive-up<sup>1, 2</sup>

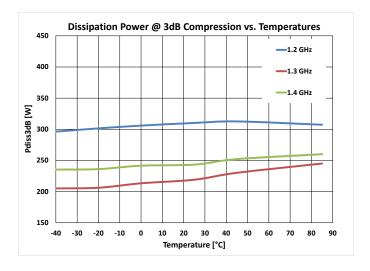
- 1. 1 mS PW, 10% DC pulsed signal,  $V_D = 50 \text{ V}$ ,  $I_{DQ} = 750 \text{ mA}$
- 2. See page 13 for load-pull and source-pull reference planes where the performance was measured.







## Power Drive-up Performance Over Temperatures Of 1.2 – 1.4 GHz EVB<sup>1</sup>

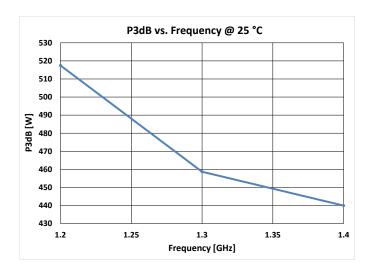

#### Notes:

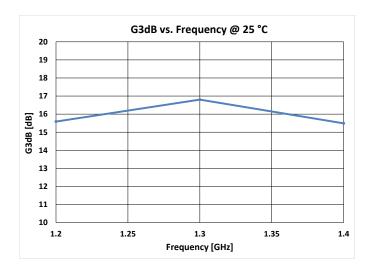
1.  $V_D = 50 \text{ V}$ ,  $I_{DQ} = 750 \text{ mA}$ , 1 mS PW, 10% DC

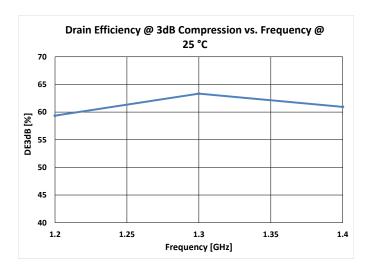


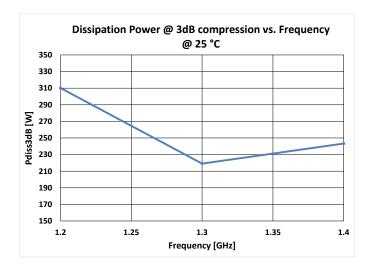






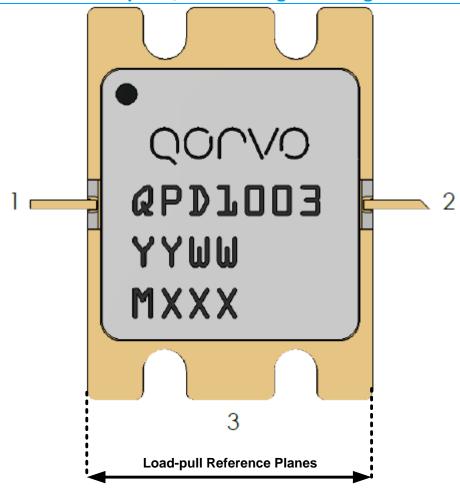





## Power Drive-up Performance At 25 °C Of 1.2 – 1.4 GHz EVB<sup>1</sup>


#### Notes:

1.  $V_D = 50 \text{ V}$ ,  $I_{DQ} = 750 \text{ mA}$ , 1 mS PW, 10% DC











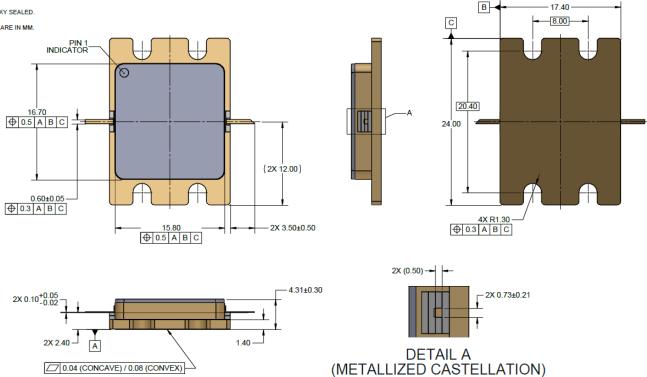

### Pin Configuration and Description, and Package Marking<sup>1</sup>



### **Pin Description**

| Pin | Symbol                  | Description               |
|-----|-------------------------|---------------------------|
| 1   | V <sub>G</sub> / RF IN  | Gate voltage / RF Input   |
| 2   | V <sub>D</sub> / RF OUT | Drain voltage / RF Output |
| 3   | GND                     | Package base / Ground     |

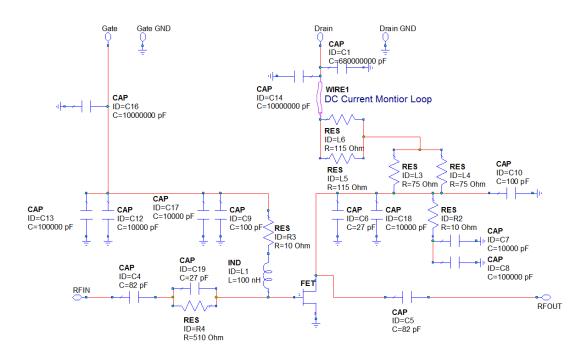
#### Notes:


1. The QPD1003 will be marked with the "1003" designator and a lot code marked below the part designator. The "YY" represents the last two digits of the calendar year the part was manufactured, the "WW" is the work week of the assembly lot start, the "MXXX" is the production lot number.



## Package Dimensions<sup>1, 2, 3</sup>

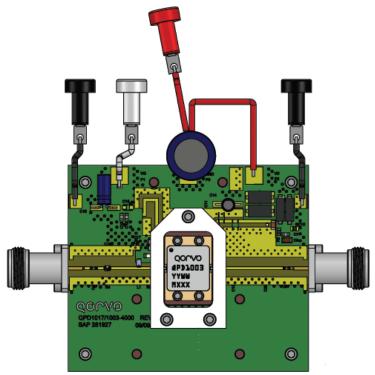
NOTES: UNLESS OTHERWISE SPECIFIED;

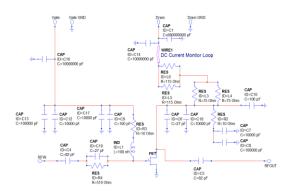

- 1. PACKAGE IS AN ALL METAL DESIGN WITH CERAMIC LID AND FEED THRU'S
- 2. PACKAGE IS Ni/Au PLATED.
- 3. PACKAGE IS EPOXY SEALED.
- 4. ALL DIMENSIONS ARE IN MM.



- 1. Unless otherwise noted, the tolerance is ±0.15 mm.
- 2. For instruction to mount the part, please refer to application note "RF565 Package Mounting, Mechanical Mounting and PCB Considerations."




### Schematic - 1.2 - 1.4 GHz EVB



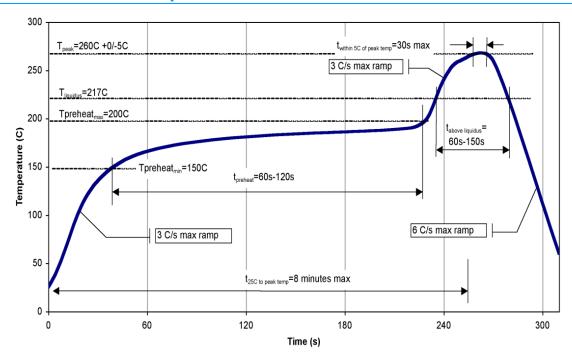

| Bias-up Procedure                                    | Bias-down Procedure                                     |
|------------------------------------------------------|---------------------------------------------------------|
| 1. Set V <sub>G</sub> to -4 V.                       | 1. Turn off RF signal.                                  |
| 2. Set I <sub>D</sub> current limit to 800 mA.       | 2. Turn off V <sub>D</sub>                              |
| 3. Apply 50 V V <sub>D</sub> .                       | 3. Wait 2 seconds to allow drain capacitor to discharge |
| 4. Slowly adjust $V_G$ until $I_D$ is set to 750 mA. | 4. Turn off V <sub>G</sub>                              |
| 5. Set I <sub>D</sub> current limit to 2 A           |                                                         |
| 6. Apply RF.                                         |                                                         |



## 1.2-1.4 GHz EVB<sup>1</sup>






#### Notes:

1. PCB Material: RO4350B, 20 mil thickness, 1 oz copper cladding

### Bill Of material - 1.2 - 1.4 GHz EVB

| Ref Des  | Value    | Qty | Manufacturer  | Part Number       |
|----------|----------|-----|---------------|-------------------|
| C1       | 680 uF   | 1   | Panasonic     | EEU-FC2A681       |
| C4, C5   | 82 pF    | 2   | ATC           | ATC600S820JT250XT |
| C9       | 1000 pF  | 1   | Samsung       | CL31B102KGFNFNE   |
| C6, C19  | 27 pF    | 2   | ATC           | 600S270JT250XT    |
| C7, C12  | 10000 pF | 2   | Panasonic     | ECJ-2VB2A103K     |
| C8       | 0.1 uF   | 1   | Panasonic     | ECJ-3YB2A104K     |
| C10      | 100 pF   | 1   | ATC           | ATC800A101JT250X  |
| C13      | 0.1 uF   | 1   | Kemet         | C0805C104K5RACTU  |
| C14, C16 | 10 uF    | 2   | Panasonic     | ECA-2AM100        |
| C17, C18 | 10000 pF | 2   | Samsung       | CL31B103KGFNFNE   |
| R2       | 51 OHM   | 1   | Panasonic     | ERJ-6GEYJ510      |
| R3       | 10 OHM   | 1   | Panasonic     | ERJ-8GEYJ100V     |
| R4       | 510 OHM  | 1   | Panasonic     | ERJ-6GEYJ511      |
| L1       | 100 nH   | 1   | Coilcraft     | 0603LS-101XJLB    |
| L3, L4   | n/a      | 1   | STEWARD, INC. | 35F0121-1SR-10    |
| L5, L6   | n/a      | 1   | STEWARD, INC. | 28F0181-1SR-10    |

## **Recommended Solder Temperature Profile**





### **Handling Precautions**

| Parameter                        | Rating             | Standard              |   |                      |
|----------------------------------|--------------------|-----------------------|---|----------------------|
| ESD – Human Body Model (HBM)     | Class 1B<br>950 V  | ANSI/ESD/JEDEC JS-001 |   | Caution!             |
| ESD – Charged Device Model (CDM) | Class C3<br>1000 V | ANSI/ESD/JEDEC JS-002 |   | ESD-Sensitive Device |
| MSL – Moisture Sensitivity Level | MSL 3              | IPC/JEDEC J-STD-020   | • |                      |

### Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Package lead plating is NiAu. Au thickness is 1.0 µm minimum.

#### **RoHS Compliance**

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C<sub>15</sub>H<sub>12</sub>Br<sub>4</sub>O<sub>2</sub>) Free
- PFOS Free
- SVHC Free

#### **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u> Tel: +1.844.890.8163

Email: customer.support@gorvo.com

For technical questions and application information: Email: <a href="mailto:info-products@gorvo.com">info-products@gorvo.com</a>

### **Important Notice**

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2016 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3
EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+
MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4
EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4
UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL
SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1