
Product Overview

The QPL1812 is a high performance pHEMT MMIC amplifier designed to run from a single 8V supply, without the need for an external dropping resistor. The high gain, high linearity, and low distortion from 50MHz to 1800MHz make this part ideal for broad-band cable applications. An integrated active bias circuit provides stable gain over temperature and process variations. It is offered in a small SOT-89 package and is RoHS compliant.

Package: SOT-89

Functional Block Diagram

Key Features

- 8V Single Supply
- Excellent Linearity
- High Gain > 19dB
- Available in Lead-free, RoHS Compliant, and Green Packaging
- 50MHz to 1800MHz operation supporting DOCSIS 4.0
- Low Noise: ≈ 4dB

Ordering Information

Part Number	Description
QPL1812SB	Sample bag with 5 pieces
QPL1812SR	7" Reel with 100 pieces
QPL1812TR13	13" Reel with 2500 pieces
QPL1812EVB-01	Evaluation Board

Applications

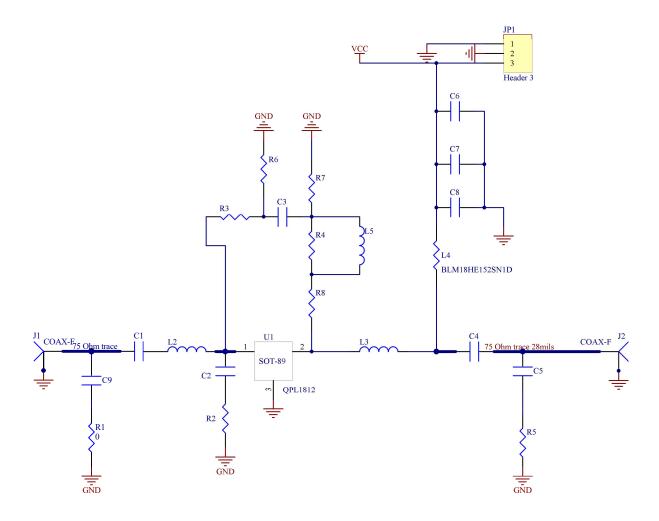
- Pre-Amplifier for CATV Line Amplifier
- DOCSIS 4.0
- 75 Ohm Distribution Amplifiers
- Broadband CATV Hybrid modules

Absolute Maximum Ratings

Parameter	Rating	Unit
Device Voltage (VDD)	10	Volts
Device Current (IDD)	250	mA
Maximum RF Input Power	10	dBm
Maximum Junction Temperature	+160	°C
Storage Temperature	-40 to +85	°C
ESD Rating	+500 (Class 1B)	V
Moisture Level Sensitivity	MSL3	

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

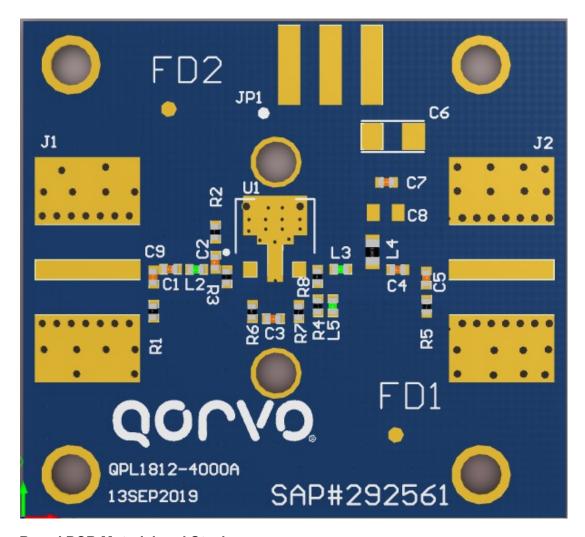
Electrical Specifications


Parameter	Condition ⁽¹⁾	Min	Тур	Max	Unit
Supply Voltage (VDD)		7.5	8	8.5	Volts
Supply Current (IDD)			180		mA
Frequency Range		50		1800	MHz
Gain	At 50MHz		19		dB
	At 1200MHz		19		dB
	At 1800MHz		20		dB
Gain Slope			1		dB
Reverse Isolation			24		dB
Input Return Loss			16		dB
Output Return Loss			16		dB
Noise Figure	At 1200MHz		3.5		dB
MER (2)	At 111MHz		42		dB
At +58 dBmV Total Composite	At 1302MHz		42		dB
Output power	At 1698MHz		41		dB
OIP2	At 50MHz		62		dBm
	At 1200MHz		63		dBm
	At 1800MHz		62		dBm
OIP3	At 50MHz		41		dBm
	At 1200MHz		39		dBm
	At 1800MHz		38		dBm
Output P1dB			21		dBm
Thermal Resistance			54		°C/W

^{1.}Typical performance at these conditions: Temp = $+25^{\circ}$ C, VDD = +8V, 75Ω system, Full band unless otherwise noted

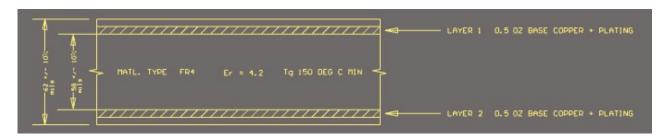
^{2. 111}MHz to 1791MHz, 0dB tilt, 149 Ch.+ 4 OFDM Ch. CCN Noise BW (ANSI/SCTE 17): 5.36MHz for J.83/B. Tx Data: ITU-T, Annex B, QAM256, 5.36 MSymbols/s

Evaluation Board Schematic 50 -1800MHz

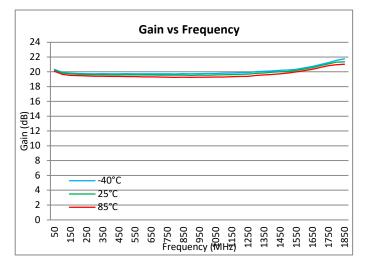


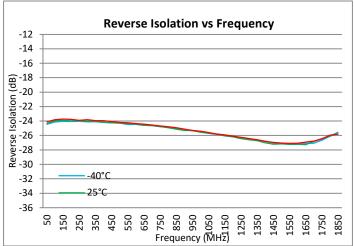
Evaluation Board Bill of Material

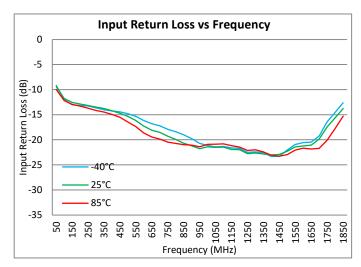
Ref Des	Ref Des Qty Description		Manufacturer	Manufacturer Part #	
U1	1	47 to 1800MHz, 19 dB Gain, Single Ended CATV Amplifier	Qorvo	QPL1812	
PCB	1	PCB, QPL1812	TTM TECHNOLOGIES INC	QPL1812-4000	
C7	1	CAP, 1000pF, 10%, 50V, X8R, 0402	TDK SINGAPORE (PTE) LTD	C1005X8R1H102K050B/	
C8	1	CAP, 100pF, 5%, 50V, C0G, 0603	AVX Asia Limited	06035A101JAT2A	
C1, C4	2	CAP, 220pF, 5%, 50V, C0G, 0402	AVX Corporation	04025A221JAT2A	
C5	1	CAP, 0.7pF, ±0.05pF, 200V, Hi-Q, 0402	American Technical Ceramics	600L0R7AT200T	
C6	1	CAP, 1uF, 10%, 50V, X5R, 0603	AVX Asia Limited	06035D105KAT2A	
C3	1	CAP, 10pF, 5%, 50V, COG, 0402	Kemet	C0402T100J5GALTU	
C9	1	CAP, 0.3pF, ±0.01pF, 100V, HI-Q, 0402	AVX Corporation	04021J0R3ZBSTR	
			PANASONIC CORP OF		
R8	1	RES 0402, 1.2KOHM, 1%, 1/10W, SMD	NORTH AMERICA	ERJ-2RKF1201X	
R3	1	RES, 150 OHM, 5%, 1/16W, 0402	Kamaya, Inc	RMC1/16S-151JTH	
R7	1	RES, 510 OHM, 5%, 1/16W, 0402	Panasonic Industrial Devices Sales	ERJ-2GEJ511	
R1, R5	2	Res, 0R, 0402, 0.04W, Chip	Vishay Americas Inc	M32159B11M	
R6	1	Res, 8.2K, +/-1%, 0402, 1/10W	Panasonic Industrial Devices Sales	ERJ-2RKF8201X	
L2,L3	2	IND, 2.2nH, +/-0.2nH, W/W, 0402	MURATA ELECTRONICS SINGAPORE PTE LT	LQW15AN2N2C10D	
L5	1	Ind, 18nH, 5% 0402	MURATA ELECTRONICS SINGAPORE PTE LT	LQW15AN18NJ00D	
L4	1	FER, BEAD, 1500 OHM, 500mA, 0603	MURATA ELECTRONICS SINGAPORE PTE LT	BLM18HE152SN1D	
JP1	1	CONN, HDR, ST, 3-PIN, 0.100"	SAMTEC INC.	TSW-103-07-G-S	
J1, J2	2	CONN, F, EDGE MOUNT, 60 MIL	Trompeter Electronics, Inc.	CBJE130-1	
C2, R2, R4	3	NOT POPULATED ITEMS	Not applicable	Not applicable	

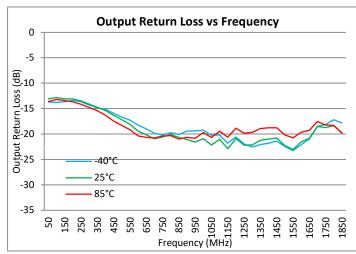


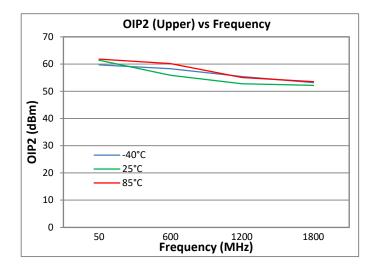
Evaluation Board Layout 50 -1800MHz

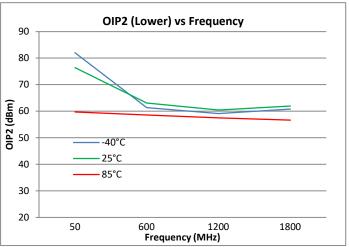

Evaluation Board PCB Material and Stack-up

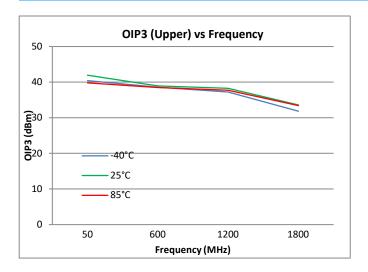

2 Layer FR4 Board, 1.3inches X 1.2inches

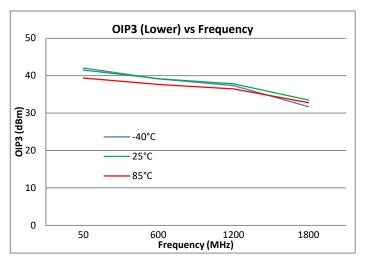


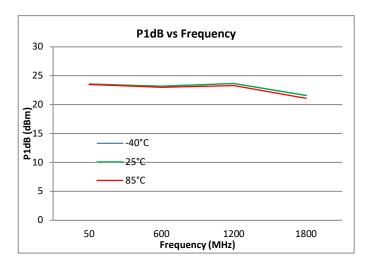


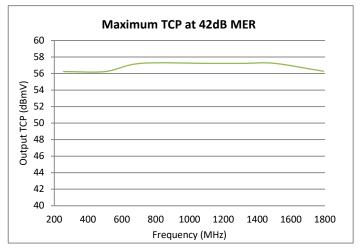

Performance Data



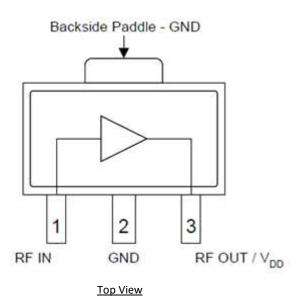








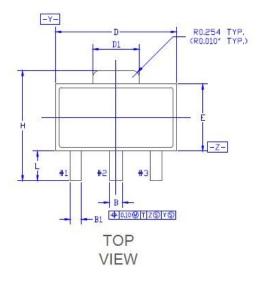
Performance Data

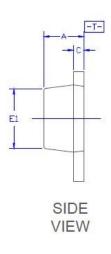


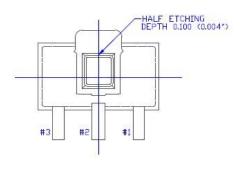
Notes:

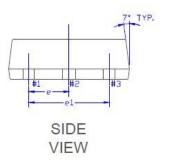
- 1. OIP2: +5dBm / tone output, $\Delta f = 50 \text{ MHz}$, Full Band
- 2. OIP3: +5dBm / tone output, $\Delta f = 6$ MHz, Full Band
- 3. MER: 111-1791MHz, 0dB Tilt, 1 OFDM + 244 QAM Channels

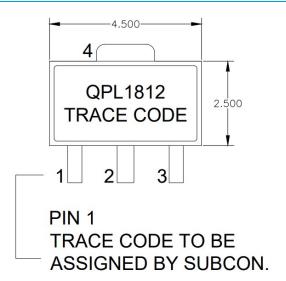
Pin Configuration and Description




Pin Number	Label	Description
1	RF IN	RF Input, DC blocking capacitor required
2	GND	Internally Not Connected
3	RF OUT / VDD	RF Output – VDD bias choke required
Backside Paddle	GND	Ground. Use recommended via pattern to minimize inductance and thermal resistance. See PCB Mounting Pattern for suggested footprint.




Package Outline


Y S	Common							
∑©0	DIMENSI	ONS MILL	METER	DIMENSIONS INCH				
0	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	1.40	1.50	1.60	0.055	0.059	0.063		
В	0.44	0.50	0.56	0.017	0.020	0.022		
В1	0.36	0.42	0.48	0.014	0.017	0.019		
C	0.35	0.40	0.44	0.014	0.016 0.01			
D	4.40	4,50	4.60	0.173	0.177 0.1			
D1	1.62	1.73	1.83	0.064	0.068	0.072		
E	2.30	2.50	2.60	0.091	0.098	0.102		
E1	2.13	2.20	2.29	0.084	0.087	0.090		
e	1.50 BSC.			0.059 BSC.				
e1	3.00 BSC.			0.118 BSC.				
Н	3.95	4.10	4.25	0.156	0.161	0.167		
L	0.90	1.10	1.20	0.035	0.043	0.047		

Notes:

1. Dimensions in millimeters

Package Marking

Recommended Mounting Pattern

Notes:

- 1. Ground/thermal vias are critical for the proper performance of this device. Vias should use a .35 mm (#80 / .0135') diameter drill and have a fina plated thru diameter of 0.25 mm (0.010").
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. RF trace width depends upon the PC board material and construction.
- 4. Ensure that the backside via region makes good physical contact with the heat sink.
- 5. All dimensions are in millimeters (inches). Angles are in degrees.

Handling Precautions

Parameter	Rating	Standard	•	
ESD – Human Body Model (HBM)	1B	ANSI / ESDA / JEDEC JS-001		Caution!
ESD - Charged Device Model (CDM)	C5	ANSI / ESDA / JEDEC JS-002	184	ESD-Sensitive Device
MSL – Moisture Sensitivity Level	Level 3	IPC / JEDEC J-STD-020		

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: Matte Sn

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Tel: 1-844-890-8163
Web: <u>www.gorvo.com</u>

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V