QOMVO

Product Overview

The QPQ1270 is a high-performance, Bulk Acoustic Wave (BAW) duplexer designed for Band 7 uplink and downlink applications.

The QPQ1270 provides low insertion loss and high rejection, making it an ideal choice for small cells. This duplexer is housed in a compact RoWs compliant 2.00 mm $\times 2.50 \mathrm{~mm} \times 1.015 \mathrm{~mm}$ surface mount package.

The QPQ1270 is part of Qorvo's extensive portfolio of RF BAW and SAW filters.

Functional Block Diagram

Pin Configuration

Pin No.	Label	Function
1	IL	Downlink Input
$2,4,5,7,8,9$	GND	Ground
3	UL	Uplink Output
6	ANT	Antenna Port

9 Pad $2.00 \mathrm{~mm} \times 2.50 \mathrm{~mm} \times 1.015 \mathrm{~mm}$ SIP

Key Features

- 70 MHz Bandwidth - Band 7 UL/DL
- Low Insertion Loss
- High Out of Band Attenuation
- Small $2.00 \mathrm{~mm} \times 2.50 \mathrm{~mm} \times 1.015 \mathrm{~mm}$ Surface Mount Package (SMP)
- Wide Temperature Range with Guaranteed specifications: $-40{ }^{\circ} \mathrm{C}$ to $+95{ }^{\circ} \mathrm{C}$
- High Operating Temperature: $+105{ }^{\circ} \mathrm{C}$
- High Power Rating: 30 dBm on DL or UL at $+95{ }^{\circ} \mathrm{C}$
- No External Matching Required
- RoWS Compliant, Pb-Free

Applications

- Base Stations Infrastructure
- Small Cells
- Repeaters
- LTE Dongles
- General Purpose Wireless

Ordering Information

Part No.	Description
QPQ1270TR7	7" Taped Reel with 2500 pieces
QPQ1270EVB	Assembled Evaluation Board

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-40 to $+125^{\circ} \mathrm{C}$
Operating Temperature ${ }^{(2)}$	-40 to $+105^{\circ} \mathrm{C}$

Notes:

1. Operation of this device outside the parameter ranges given may cause permanent damage.
2. Device will function but it is not guaranteed to meet electrical specifications

Minimum Lifetime Ratings

Conditions	Rating
+30 dBm at Pin 1 (DL to ANT), 2620-2690 MHz,	$>87,600$ hours
FD-LTE, 5 MHz, 16 QAM, 25 RB, PAR $8 \mathrm{~dB},+95^{\circ} \mathrm{C}$	
+30 dBm at Pin 6 (ANT to UL), 2500-2570 MHz,	$>87,600$ hours
FD-LTE, $5 \mathrm{MHz}, 16$ QAM, 25 RB, PAR $8 \mathrm{~dB},+95^{\circ} \mathrm{C}$	
+30 dBm at Pin 3 (UL to ANT), $2500-2570 \mathrm{MHz}$,	$>87,600$ hours
FD-LTE, $5 \mathrm{MHz}, 16$ QAM, 25 RB, PAR $8 \mathrm{~dB},+95^{\circ} \mathrm{C}$	

Electrical Specifications - Uplink ${ }^{(3)}$

Test conditions unless otherwise noted: Temp $=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
Parameter	Conditions	Min	Typ ${ }^{(7)}$	Max	Units
Center Frequency		-	2535	-	MHz
Average Insertion Loss ${ }^{(4)}$	$2500-2505 \mathrm{MHz}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right)$	-	2.4	3.6	dB
	$2500-2505 \mathrm{MHz}\left(+35^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	-	2.4	3.3	
	$2505-2565 \mathrm{MHz}$	-	1.6	2.0	
	$2565-2570 \mathrm{MHz}$	-	2.1	3.2	
Amplitude Variation ${ }^{(5)}$	$2500-2570 \mathrm{MHz}$	-	1.3	3.0	dB
Group Delay Variation ${ }^{(6)}$	$2500-2570 \mathrm{MHz}$ (over any 5 MHz)	-	4.3	20	ns p-p
Phase Ripple ${ }^{(6)}$	$2500-2570 \mathrm{MHz}$ (over any 5 MHz)	-	1.1	8	$\bigcirc \mathrm{o}-\mathrm{p}$
Return Loss	Antenna Port ($2500-2570 \mathrm{MHz}$)	8.3	11.2	-	dB
	Uplink Port (2500-2570 MHz)	8.3	11.6	-	
Attenuation ${ }^{(8)}$	$100-700 \mathrm{MHz}$	30	58	-	dB
	$700-960 \mathrm{MHz}$	40	53	-	
	$960-1805 \mathrm{MHz}$	30	48	-	
	$1805-1880 \mathrm{MHz}$	43	51	-	
	$1880-2110 \mathrm{MHz}$	25	52	-	
	2110-2170 MHz	45	54	-	
	$2170-2300 \mathrm{MHz}$	25	52	-	
	$2300-2400 \mathrm{MHz}$	45	51	-	
	$2402-2474 \mathrm{MHz}$	40	55	-	
	$2474-2480 \mathrm{MHz}$	7	38	-	
	2590-2620 MHz	10	18	-	
	$2620-2690$ MHz	54	56	-	
	$2690-3400 \mathrm{MHz}$	25	42	-	
	$3400-3800 \mathrm{MHz}$	30	42	-	
	$3800-5150 \mathrm{MHz}$	15	45	-	
	$5150-6000 \mathrm{MHz}$	25	54	-	
WiFi Attenuation ${ }^{(9)}$	2401 -2473 MHz (WiFi Channel 1 to 11)	48	58	-	dB
Source/Load Impedance ${ }^{(10)}$	Single-ended	-	50	-	Ω

Notes:

3. All specifications are based on the Qorvo schematic for the main reference design.
4. Average Insertion Loss is calculated by averaging $|\mathrm{S} 21|$ in dB for each measured point within defined frequency range.
5. Amplitude Variation is defined as the difference between the lowest loss and the highest loss within defined frequency range.
6. This is defined as the worst difference between a peak and adjacent valley within defined frequency range.
7. Typical values are based on average measurements of 12 devices at room temperature.
8. Relative to zero dB.
9. Data is an integrated channel measurement from 2412 MHz to 2462 MHz with a 22 MHz channel width and 5 MHz step size (802.11 b).
10. This is the optimum impedance in order to achieve the performance shown.

Electrical Specifications - Downlink ${ }^{(1)}$

Test conditions unless otherwise noted: Temp $=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ ${ }^{(5)}$	Max	Units
Center Frequency		-	2655	-	MHz
Average Insertion Loss ${ }^{(2)}$	2620-2625 MHz	-	2.3	3.0	dB
	2625-2685 MHz	-	1.8	2.2	
	$2685-2690 \mathrm{MHz}$	-	2.1	3.0	
Amplitude Variation ${ }^{(3)}$	$2620-2690 \mathrm{MHz}$	-	1.0	1.8	dB
Group Delay Variation ${ }^{(4)}$	$2620-2690 \mathrm{MHz}$ (over any 5 MHz)	-	4.1	20	ns p-p
Phase Ripple ${ }^{(4)}$	$2620-2690 \mathrm{MHz}$ (over any 5 MHz)	-	1.1	8	${ }^{\circ} \mathrm{p}-\mathrm{p}$
Return Loss	Antenna Port (2620-2690 MHz)	9.1	12.2	-	dB
	Downlink Port (2620-2690 MHz)	8.3	10.8		
Attenuation ${ }^{(6)}$	$100-960 \mathrm{MHz}$	35	63	-	dB
	$960-1710 \mathrm{MHz}$	30	53	-	
	$1710-1920 \mathrm{MHz}$	45	53	-	
	$1920-1980 \mathrm{MHz}$	46	52	-	
	$1980-2300 \mathrm{MHz}$	30	53	-	
	2300-2400 MHz	57	60	-	
	$2400-2484 \mathrm{MHz}$	57	60	-	
	$2485-2570 \mathrm{MHz}\left(5 \mathrm{MHz}\right.$ averaging) ${ }^{(8)}$	55	60	-	
	$2570-2585 \mathrm{MHz}$	25	51	-	
	$2585-2595 \mathrm{MHz}$	5	30	-	
	$2715-2725 \mathrm{MHz}$	5	25	-	
	$2725-2800 \mathrm{MHz}$	25	58	-	
	$2800-3400 \mathrm{MHz}$	30	58	-	
	$3400-3800 \mathrm{MHz}$	30	52	-	
	$3800-5150 \mathrm{MHz}$	20	45	-	
	$5150-5400 \mathrm{MHz}$	40	62	-	
	$5400-6000 \mathrm{MHz}$	30	62	-	
$2{ }^{\text {nd }}$ Harmonic at ANT	$\mathrm{P}_{\text {in }}=+27 \mathrm{dBm}$ into DL (2620-2690)	-	67	-	dBc
IMD3L at Uplink	2 Tone of Pin $=+24 \mathrm{dBm}$ into DL port	-	101	-	dBc
IMD5L at Uplink	2 Tone of Pin $=+24 \mathrm{dBm}$ into DL port	-	157	-	dBc
Source/Load Impedance ${ }^{(7)}$	Single-ended	-	50	-	Ω

Electrical Specifications - Isolation

Test conditions unless otherwise specified: Temp $=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Conditions ${ }^{(1,2)}$	Min	Typ ${ }^{(5)}$	Max	Unit
Isolation ${ }^{(8)}$	$2500-2560 \mathrm{MHz}$	57	61	-	dB
	$2560-2570 \mathrm{MHz}$	54	59	-	
	$2620-2690 \mathrm{MHz}$	57	59	-	

Notes:

1. All specifications are based on the Qorvo schematic for the main reference design.
2. Average Insertion Loss is calculated by averaging $|\mathrm{S} 21|$ in dB for each measured point within defined frequency range.
3. Amplitude Variation is defined as the difference between the lowest loss and the highest loss within defined frequency range.
4. This is defined as the worst difference between a peak and adjacent valley within defined frequency range.
5. Typical values are based on average measurements of 12 devices at room temperature.
6. Relative to zero dB.
7. This is the optimum impedance in order to achieve the performance shown.
8. Data is the integrated loss value with respect to zero dB of the linear s-parameter over 5 MHz range.

QPQ1270
Band 7 BAW Duplexer

Electrical Specifications - Uplink ${ }^{(1)}$

Test conditions unless otherwise noted: Temp $=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$					
Parameter	Conditions	Min	Typ ${ }^{(5)}$	Max	Units
Center Frequency		-	2535	-	MHz
Average Insertion Loss ${ }^{(2)}$	$2500-2505 \mathrm{MHz}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right)$	-	2.4	3.8	dB
	$2500-2505 \mathrm{MHz}\left(+35^{\circ} \mathrm{C}\right.$ to $\left.+95^{\circ} \mathrm{C}\right)$	-	2.4	3.3	
	$2505-2565 \mathrm{MHz}$	-	1.6	2.2	
	$2565-2570 \mathrm{MHz}$	-	2.1	3.4	
Amplitude Variation ${ }^{(3)}$	$2500-2570 \mathrm{MHz}$	-	1.3	3.2	dB
Group Delay Variation ${ }^{(4)}$	$2500-2570 \mathrm{MHz}$ (over any 5 MHz)	-	4.3	22	ns p-p
Phase Ripple ${ }^{(4)}$	$2500-2570 \mathrm{MHz}$ (over any 5 MHz)	-	1.1	9	$\bigcirc \mathrm{o}-\mathrm{p}$
Return Loss	Antenna Port ($2500-2570 \mathrm{MHz}$)	8.3	11.2	-	dB
	Uplink Port (2500-2570 MHz)	8.3	11.6		
Attenuation ${ }^{(6)}$	$100-700 \mathrm{MHz}$	30	58	-	dB
	$700-960 \mathrm{MHz}$	40	53	-	
	$960-1805 \mathrm{MHz}$	30	48	-	
	$1805-1880 \mathrm{MHz}$	43	51	-	
	$1880-2110 \mathrm{MHz}$	25	52	-	
	2110-2170 MHz	45	54	-	
	$2170-2300 \mathrm{MHz}$	25	51	-	
	$2300-2400 \mathrm{MHz}$	45	51	-	
	$2402-2474 \mathrm{MHz}$	38	55	-	
	$2474-2480 \mathrm{MHz}$	5	38	-	
	$2590-2620 \mathrm{MHz}$	9	18	-	
	$2620-2690 \mathrm{MHz}$	53	56	-	
	$2690-3400 \mathrm{MHz}$	25	42	-	
	$3400-3800 \mathrm{MHz}$	30	42	-	
	$3800-5150 \mathrm{MHz}$	15	45	-	
	$5150-6000 \mathrm{MHz}$	25	54	-	
WiFi Attenuation ${ }^{(7)}$	2401 -2473 MHz (WiFi Channel 1 to 11)	47	58	-	dB
Source/Load Impedance ${ }^{(8)}$	Single-ended	-	50	-	Ω

Notes:

1. All specifications are based on the Qorvo schematic for the main reference design.
2. Average Insertion Loss is calculated by averaging |S21| in dB for each measured point within defined frequency range.
3. Amplitude Variation is defined as the difference between the lowest loss and the highest loss within defined frequency range.
4. This is defined as the worst difference between a peak and adjacent valley within defined frequency range.
5. Typical values are based on average measurements of 12 devices at room temperature.
6. Relative to zero dB.
7. Data is an integrated channel measurement from 2412 MHz to 2462 MHz with a 22 MHz channel width and 5 MHz step size (802.11 b).
8. This is the optimum impedance in order to achieve the performance shown.

Electrical Specifications - Downlink ${ }^{(1)}$

Test conditions unless otherwise noted: Temp $=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ ${ }^{(5)}$	Max	Units
Center Frequency		-	2655	-	MHz
Average Insertion Loss ${ }^{(2)}$	2620-2625 MHz	-	2.3	3.0	dB
	$2620-2665 \mathrm{MHz}$	-	1.8	2.3	
	$2665-2690 \mathrm{MHz}$	-	2.1	3.2	
Amplitude Variation ${ }^{(3)}$	2620-2690 MHz	-	0.8	2.0	dB
Group Delay Variation ${ }^{(4)}$	$2620-2690 \mathrm{MHz}$ (over any 5 MHz)	-	4.1	21	ns p-p
Phase Ripple ${ }^{(4)}$	$2620-2690 \mathrm{MHz}$ (over any 5 MHz)	-	1.1	9	$\bigcirc \mathrm{op}$-p
Return Loss	Antenna Port (2620-2690 MHz)	9.0	12.2	-	dB
	Uplink Port (2620-2690 MHz)	8.3	12.1		
Attenuation ${ }^{(6)}$	$100-960 \mathrm{MHz}$	35	63	-	dB
	$960-1710 \mathrm{MHz}$	30	53	-	
	$1710-1920 \mathrm{MHz}$	45	53	-	
	$1920-1980 \mathrm{MHz}$	46	52	-	
	$1980-2300 \mathrm{MHz}$	30	53	-	
	2300-2400 MHz	56	60	-	
	$2400-2484 \mathrm{MHz}$	56	60	-	
	$2485-2570 \mathrm{MHz}$ (5 MHz averaging) ${ }^{(8)}$	54	60	-	
	$2570-2585 \mathrm{MHz}$	24	51	-	
	2585-2595 MHz	4	30	-	
	$2715-2725 \mathrm{MHz}$	4	25	-	
	$2725-2800 \mathrm{MHz}$	24	58	-	
	$2800-3400 \mathrm{MHz}$	30	58	-	
	$3400-3800 \mathrm{MHz}$	30	52	-	
	$3800-5150 \mathrm{MHz}$	20	45	-	
	$5150-5400 \mathrm{MHz}$	40	62	-	
	$5400-6000 \mathrm{MHz}$	30	62	-	
$2{ }^{\text {nd }}$ Harmonic at ANT	$\mathrm{P}_{\text {in }}=+27 \mathrm{dBm}$ into DL (2620-2690)	-	67	-	dBc
IMD3L at Uplink	2 Tone of Pin $=+23 \mathrm{dBm}$ into DL port	-	101	-	dBc
IMD5L at Uplink	2 Tone of Pin $=+23 \mathrm{dBm}$ into DL port	-	157	-	dBc
Source/Load Impedance ${ }^{(7)}$	Single-ended	-	50	-	Ω

Electrical Specifications - Isolation ${ }^{(1)}$

Test conditions unless otherwise specified: Temp $=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$

Parameter	Conditions ${ }^{(1,2)}$	Min	Typ ${ }^{(5)}$	Max	Unit
Isolation ${ }^{(8)}$	$2500-2560 \mathrm{MHz}$	56	61	-	dB
	$2560-2570 \mathrm{MHz}$	53	59	-	
	$2620-2690$ MHz	56	59	-	

Notes:

1. All specifications are based on the Qorvo schematic for the main reference design.
2. Average Insertion Loss is calculated by averaging $|\mathrm{S} 21|$ in dB for each measured point within defined frequency range.
3. Amplitude Variation is defined as the difference between the lowest loss and the highest loss within defined frequency range.
4. This is defined as the worst difference between a peak and adjacent valley within defined frequency range.
5. Typical values are based on average measurements of 12 devices at room temperature.
6. Relative to zero dB.
7. This is the optimum impedance in order to achieve the performance shown.
8. Data is the integrated loss value with respect to zero dB of the linear s-parameter over 5 MHz range.

Evaluation Board and Schematic - QPQ1270EVB

Bill of Material - QPQ1270EVB

Ref. Des.	Value	Description	Manufacturer	
U1	-	Duplexer, Band7, BAW	Qorvo	QPQ1270
SMA	-	Connector, SMA	Radiall	$9602-1111-018$
PCB	-	Printed Circuit Board, Evaluation	Qorvo	283666

De-embedded Performance Plots Uplink

Test conditions unless otherwise noted: Temp $=+25^{\circ} \mathrm{C}$

De-embedded Performance Plots Downlink

Test conditions unless otherwise noted: Temp $=+25^{\circ} \mathrm{C}$

De-embedded Performance Plots Isolation

Test conditions unless otherwise noted: $\mathrm{Temp}=+25^{\circ} \mathrm{C}$

Package Dimensions

Notes:

1. All dimensions are in millimeters. Angles are in degrees.
2. Dimension and tolerance formats conform to ASME Y14.4M-1994.
3. The terminal \#1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

Package Marking

PCB Mounting Pattern

Notes:

1. All dimensions are in millimeters. Angles are in degrees.
2. This drawing specifies the mounting pattern used on the Qorvo evaluation board for this product. Some modification may be necessary to suit end user assembly materials and processes.

Tape and Reel Information - Carrier and Cover Tape Dimensions

Tape and reel specifications for this part are also available on the Qorvo website.
Standard T/R size $=2500$ pieces on a 7 " reel.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.094	2.40
Cavity	Width	B0	0.114	2.90
	Depth	K0	0.043	1.10
	Pitch	P1	0.157	4.00
Centerline	Cavity to Perforation - Length Direction	P2	0.079	2.00
Distance	Cavity to Perforation - Width Direction	F	0.138	3.50
Cover Tape	Width	C	0.213	5.40
Carrier Tape	Width	W	0.315	8.00

Tape and Reel Information - Reel Dimensions

Tape and reel specifications for this part are also available on the Qorvo website.
Standard T/R size $=2500$ pieces on a 7 " reel.

Feature	Measure	Symbol	Size (in)	
Flange	Diameter	A	6.969	177.0
	Thickness	W 2	0.559	14.2
	Space Between Flange	W 1	0.346	8.8
Hub	Outer Diameter	N	2.283	58.0
	Arbor Hole Diameter	C	0.512	13.0
	Key Slit Width	B	0.079	2.0
	Key Slit Diameter	D	0.787	20.0

Assembly Notes

Compatible with both lead-free $\left(260^{\circ} \mathrm{C}\right.$ peak reflow temperature) and tin/lead $\left(245^{\circ} \mathrm{C}\right.$ peak reflow temperature) soldering processes.

Contact Plating: NiAu (Thickness: Ni $5.0 \pm 3.0 \mu \mathrm{~m} ; \mathrm{Au} 0.1 \mu \mathrm{~m}$ min.)

QPQ1270
Band 7 BAW Duplexer

Handling Precautions

Parameter	Rating	Standard		
ESD - Human Body Model (HBM)	Class 1B	ESDA / JEDEC JS-001-2012		
ESD-Charged Device Model (CDM)	Class C2b	ESDA / JEDEC JS-002-2014		
MSL - Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020		

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{O}_{2}\right)$ Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:
Web: www.gorvo.com
Tel: 1-844-890-8163
Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.
Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Signal Conditioning category:
Click to view products by Qorvo manufacturer:

Other Similar products are found below :
MAPDCC0001 MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50T3 DS-323-PIN B39321R801H210 1A0220-3 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057 FM-104-PIN CER0813B MAPDCC0005 3A325 4028741180 ATB3225-75032NCT BD0810N50100AHF BD2425J50200AHF C5060J5003AHF JHS-115-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2194E CDBLB455KCAX39-B0 TGL2208-SM, EVAL RF1353C 1E13053 1F1304-3S 1G1304-30 B0922J7575AHF 2020-6622-20 10017-3 TP-103-PIN BD1222J50200AHF

