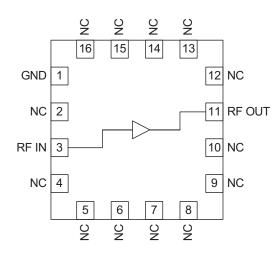


LINEAR GENERAL PURPOSE AMPLIFIER

Package Style: QFN, 16-Pin, 3mmx3mm



Features

- For Use in Both 50Ω and 75Ω Systems
- 5 MHz to 1500 MHz Operation
- Internally Matched Input and Output
- 20dB Small Signal Gain
- 1.2dB Noise Figure
- +24dBm Output Power
- Single 5V to 9V Positive Power Supply

Applications

- Linear LNA/Driver
- CATV Distribution Amplifiers
- Cable Modems
- Broadband Gain Blocks
- Laser Diode Driver
- Return Channel Amplifier
- Base Stations

Functional Block Diagram

Product Description

The RF3827 is a general purpose, low-cost, high-linearity RF amplifier IC. The device is manufactured on a Gallium Arsenide process and is featured in a 3mmx3mm, 16-pin, QFN package. It is ideally suited for use as a linear/low noise amplifier, with OIP3 equal to 38dBm and noise figure less than 1.5dB.

Ordering Information

RF3827SQ Sample bag with 25 pieces
RF3827SR 7" Sample reel with 100 pieces
RFS3827TR7 7" Reel with 2500 pieces

RF3827PCK-410 5MHz to 1500MHz PCBA with 5-piece sample bag

Optimum Technology Matching® Applied

□_GaAs HBT	☐ SiGe BiCMOS	☐ GaAs pHEMT	☐ GaN HEMT
▼ GaAs MESFET	☐ Si BiCMOS	☐ Si CMOS	☐ RF MEMS
☐ InGaP HBT	☐ SiGe HBT	☐ Si BJT	☐ LDMOS

RF MICRO DEVICES®, RRFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity® PowerStard®, a PotalRSI®*TOTAL RADIO™ and UltimateBlue™ are trademarks of RRFMD. LLC. BLUETCOTH is a trade mark owned by Bulletoth SIG. Inc., U.S.A. and licensed for use by PRFMD. All other trade names, trademarks and restratemarks are trademarks and restratemarks and restratemarks

Absolute Maximum Ratings

Parameter	Rating	Unit
Device Current	175	mA
Device Voltage	9	V
Input RF Power	+13	dBm
Output Load VSWR	20:1	
Ambient Operating Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

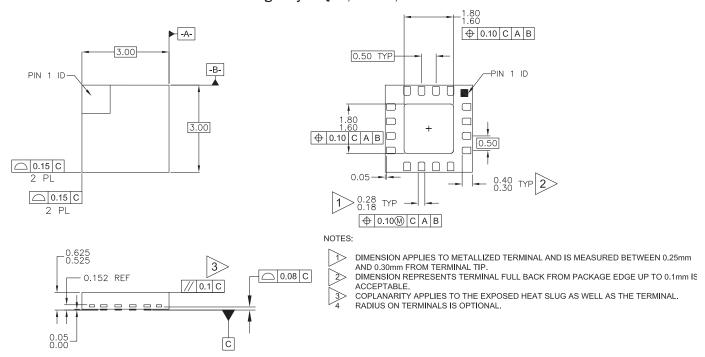
RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

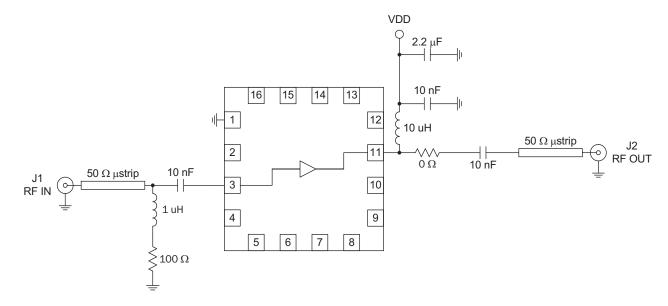
Parameter	Specification		Unit	Condition	
	Min.	Тур.	Max.	Offic	Condition
Overall (50 Ω)					T=25 °C, V _{DD} =8V, 50 Ω Evaluation Board
Frequency Range	50		1000	MHz	
Gain		20.5		dB	At 500 MHz
Gain Flatness		+/-1.0		dB	50MHz to 1000MHz
Noise Figure		1.3		dB	50 MHz to 1000 MHz
Output IP ₃		38		dBm	50 MHz to 1000 MHz
Output P _{1dB}		25±1.0		dBm	50 MHz to 1000 MHz
Reverse Isolation		24		dB	50MHz to 1000MHz

Parameter	Specification		Unit	Condition	
	Min.	Тур.	Max.	Offic	Condition
Thermal					
Theta JC		40		°C/W	Referenced to the GND via of Pin 1
Maximum Junction Temperature			150	°C	
Power Supply					
Supply Voltage (V _{DD})	5	7	9	V	
Operating Current Range	115	120	130	mA	

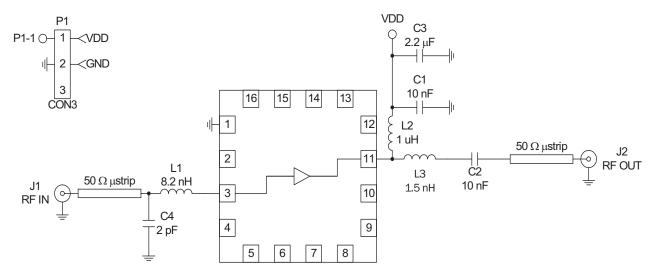
RF3827



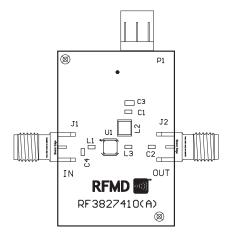
Pin	Function	Description	Interface Schematic
1	GND	Keep traces physically short. Connect this pin to the ground plane with a via.	
2	NC	No internal connection. Externally connected to RF input trace.	
3	RF IN	RF input pin. This pin is internally DC blocked. An external DC blocking capacitor is not required.	
4	NC	No connection. This pin should be connected to the ground plane.	
5	NC	No connection. This pin should be connected to the ground plane.	
6	NC	No connection. This pin should be connected to the ground plane.	
7	NC	No connection. This pin should be connected to the ground plane.	
8	NC	No connection. This pin should be connected to the ground plane.	
9	NC	No connection. This pin should be connected to the ground plane.	
10	NC	No internal connection. Externally connected to RF output trace.	
11	RF OUT	RF output and bias pin. Because DC is present on this pin, a DC blocking capacitor, suitable for the frequency of operation, should be used in most applications. For biasing, only an RF choke is needed.	RF IN O
12	NC	No connection. This pin should be connected to the ground plane.	
13	NC	No connection. This pin should be connected to the ground plane.	
14	NC	No connection. This pin should be connected to the ground plane.	
15	NC	No connection. This pin should be connected to the ground plane.	
16	NC	No connection. This pin should be connected to the ground plane.	
Pkg Base	GND		

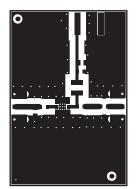

Package Drawing

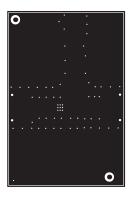
Package Style: QFN, 16-Pin, 3mmx3mm


Application Schematic - 50Ω 5MHz to 200MHz Linear Driver

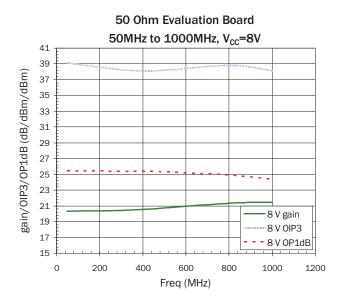
VCC	Frequency	ICC	Gain	OIP3	OP1dB
(V)	MHz	mA	dB	dBm	dBm
8	5	99.945	18.92	33.7	21.69
8	10	100.437	18.63	37.75	22.86
8	100	101.093	19.53	38.47	25.21
8	200	101.221	19.8	38.6	25.45

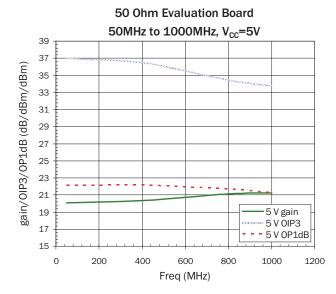

Evaluation Board Schematic - $\mathbf{50}\Omega$ 50 MHz to $\mathbf{1000}$ MHz

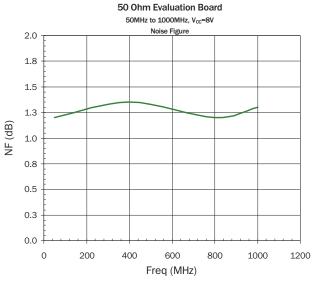




Evaluation Board Layout - 50Ω Board Size 1.0" x 1.5"


Board Thickness 0.031", Board Material FR-4





RF3827

Theory of Operation

RF3827 can be used as both low noise amplifier and linear transmit driver. Internal matching is such that the part can be used effectively in both 50Ω and 75Ω systems. The standard evaluation board is 50Ω , as are the corresponding specifications shown within the data sheet. Perhaps more convenient for the 75Ω designer, would be alternate products RF2360 and CXE-2089Z. These two devices see very similar performance to RF3827, and standard 75Ω evaluation boards are available.

An important note concerning RF3827 layout would apply to package pins 2 and 10. These two pins have no internal connection. They are, however, connected externally to RF input and output traces on the standard evaluation board. Given their close proximity to the actual input and output pins, this is simply a matter of convenience.

The standard RF3827 evaluation board is matched to provide excellent performance from 50 MHz to 1000 MHz. An application schematic is also shown for 5 MHz to 200 MHz, in the event lower frequency operation is desired. Specifications are shown in the tabular sections for the condition $V_{DD}=8V$. Note that graphs are also provided herein for the common design case where $V_{DD}=5V$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V