

Features

- Tx Output Power: 29.5dBm
- Tx Gain: 31dBm
- Rx Gain: 18dB
- Rx Noise Figure: 2.5 dB
- Integrated LNA with Bypass Mode

Applications

- $868 \mathrm{MHz} / 900 \mathrm{MHz}$ ISM Band Application
- Single Chip RF Front End Module
- Portable Battery Powered Equipment
- Wireless Automatic Metering Applications
Applicans

Product Description

The RF6509 integrates a complete solution in a single Front-End Module (FEM) for AMR and Smart Grid solutions. The RF6509 integrates a 915 MHz PA, some transmit (Tx) filtering, input and output switches, a Tx or receive (Rx) attenuation path, and an LNA with bypass mode. The RF6509 has a single-ended input and output for optimized ease of use and implementation. The pin-out of the FEM enables users to implement additional filtering external to the module, if needed. The device is provided in a LGA, $32 \mathrm{pin}, 8 \mathrm{~mm} \times 8 \mathrm{~mm} \times 1.2 \mathrm{~mm}$ package.

Ordering Information

RF6509

RF6509PCK-410

Optimum Technology Matching® Applied

\square GaAs HBT	\square SiGe BiCMOS	\square GaAs pHEMT	\square GaN HEMT
\square GaAs MESFET	\square Si BiCMOS	\square Si CMOS	\square BiFET HBT
\square InGaP HBT	\square SiGe HBT	\square Si BJT	\square LDMOS

Absolute Maximum Ratings

Parameter	Rating	Unit
Overall		
DC Supply Voltage	+5.0	V
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$
Low Noise Amplifier		
DC Supply Current	32	mA
Input RF Power	5	dBm
Power Amplifier	1200	mA
DC Supply Current	10	dBm
Input RF Power		
Transmit/Receive Switch	33	dBm
Input RF Power		

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall					$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{PAV}_{\mathrm{CC} 1} \text { and } \mathrm{PAV}_{\mathrm{CC} 1}=3.2 \mathrm{~V}, \mathrm{PA}_{\mathrm{BIAS}}=$ $3.2 \mathrm{~V} \mathrm{PAV}_{\text {REG }}=2.85 \mathrm{~V}$, unless otherwise noted
Usable Frequency Range	868	902 to 928		MHz	
Input Impedance		50		Ω	
Input VSWR		2:1			
Output Load VSWR		6:1			
PA Section					
CW Output Power	29	29.5		dBm	$\mathrm{PA}_{\text {BIAS }}, \mathrm{P}_{\text {IN }}=-3<0<3 \mathrm{dBm}$
Small Signal Gain	29	31		dB	$\mathrm{PA}_{\text {BIAS }}, \mathrm{P}_{\text {IN }}=-20 \mathrm{dBm}$
Second Harmonic		-42.5		dBc	$\mathrm{PA}_{\text {BIAS }}, \mathrm{P}_{\text {OUT }}=29.5 \mathrm{dBm}$ at ANT port
Third Harmonic		-72.5		dBc	$\mathrm{PA}_{\text {BIAS }}, \mathrm{P}_{\text {OUT }}=29.5 \mathrm{dBm}$ at ANT port
Fourth Harmonic		-42.5		dBc	$\mathrm{PA}_{\text {BIAS }}, \mathrm{P}_{\text {OUT }}=29.5 \mathrm{dBm}$ at ANT port
Input VSWR		2:1			
Output VSWR		6:1			Oscillations <-60dBc
Power Supply Voltage	2.7	3.2	3.6	V	
Power Supply Current		730	850	mA	PA ${ }_{\text {BIAS }}$
		70	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CCPA }}=3.2 \mathrm{~V}, \mathrm{PA}_{\text {BIAS }}=3.2 \mathrm{~V}, \mathrm{PAV}$ REG $=0 \mathrm{~V}$,
Power Supply Current for PA V ${ }_{\text {BIAS }}$		18.0	20.0	mA	
Power Supply Current for PA V REG		70.0	100.0	$\mu \mathrm{A}$	
LNA Section					
HIGH GAIN MODE					$\begin{aligned} & \mathrm{LNAV}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{LNAV}_{\mathrm{REF}}=3.0 \mathrm{~V}, \mathrm{LNAV}_{\text {SEL }}= \\ & 0.0 \mathrm{~V}, \mathrm{PA}_{\mathrm{BIAS}}=0.0 \mathrm{~V}, \mathrm{PAV}_{\text {REG }}=0.0 \mathrm{~V} \end{aligned}$
Gain	17.5	18	18.5	dB	902 MHz to 928 MHz
	15.5	16.5	17.5	dB	868MHz
Noise Figure		2.4	3.4	dB	
Input IP3	7.5	9.5	12	dBm	
Output VSWR	1.6:1	2:1	2.4:1		
Supply Current			12	mA	

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
LNA Section (continued)					
LOW GAIN MODE					$\begin{aligned} & \mathrm{LNAV}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{LNAV}_{\text {REF }}=3.0 \mathrm{~V}, \mathrm{LNAV}_{\text {SEL }}= \\ & 0.0 \mathrm{~V}, \mathrm{PA}_{\mathrm{BIAS}}=0.0 \mathrm{~V}, \mathrm{PAV}_{\text {REG }}=0.0 \mathrm{~V} \end{aligned}$
Gain		-6		dB	
Noise Figure		6		dB	
Supply Current		3		mA	
LNAV ${ }_{\text {CC }}$ Voltage	2.7	3.0		V	
LNAV ${ }_{\text {REF }}$ Logic Level HIGH	2.7	3.0		V	
LNAV ${ }_{\text {REF }}$ Logic Level LOW	0.0		0.3	V	
$\mathrm{LNAV}_{\text {SEL }}$ Logic Level HIGH	1.8	3.0		V	
$\mathrm{LNAV}_{\text {SEL }}$ Logic Level LOW			0.8	V	
Power Down Current			10	$\mu \mathrm{A}$	LNA_EN = LOW, LNAV ${ }_{\text {SEL }}=$ LOW
Transceiver Switch Section					
Insertion Loss TXin-PAin	0.9	1	1.1	dB	$\mathrm{V}_{1 \mathrm{S1} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{2 S 1}=0.0 \mathrm{~V}, \mathrm{~V}_{3 \mathrm{~S} 1}=0.0 \mathrm{~V}$
Isolation TXin-PAin	25	27		dB	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~S} 1}=0.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 1}=3.0 \mathrm{~V}, \mathrm{v}_{3 S 1}=0.0 \mathrm{~V} \text { or } \\ & \mathrm{v}_{1 \mathrm{S1}}=0.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 1}=0.0 \mathrm{~V}, \mathrm{v}_{3 S 1}=3.0 \mathrm{~V} \end{aligned}$
TXin/RXout Return Loss (Thru path)		-15	-14	dB	$\begin{aligned} & \mathrm{v}_{1 \mathrm{~S} 1}=0.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 1}=3.0 \mathrm{~V}, \mathrm{v}_{3 \mathrm{~S} 1}=0.0 \mathrm{~V} \text { and } \\ & \mathrm{v}_{1 \mathrm{~S} 2}=0.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 2}=3.0 \mathrm{~V}, \mathrm{v}_{3 \mathrm{~S} 2}=0.0 \mathrm{~V} \end{aligned}$
TXin/RXout Return Loss (Transmit path) ${ }^{\text {c }}$			-9	dB	$\begin{aligned} & \mathrm{V}_{1 S 1}=3.0 \mathrm{~V}, \mathrm{~V}_{2 S 1}=0.0 \mathrm{~V}, \mathrm{~V}_{3 S 1}=0.0 \mathrm{~V} \text { and } \\ & \mathrm{V}_{1 S 2}=0.0 \mathrm{~V}, \mathrm{~V}_{2 S 2}=0.0 \mathrm{~V}, \mathrm{~V}_{3 S 2}=3.0 \mathrm{~V} \end{aligned}$
TXin/RXout Return Loss (Receive path)			-9	dB	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~S} 1}=0.0 \mathrm{~V}, \mathrm{~V}_{2 \mathrm{~S} 1}=0.0 \mathrm{~V}, \mathrm{~V}_{3 S 1}=3.0 \mathrm{~V} \text { and } \\ & \mathrm{V}_{1 \mathrm{~S} 2}=3.0 \mathrm{~V}, \mathrm{~V}_{2 \mathrm{~S} 2}=0.0 \mathrm{~V}, \mathrm{~V}_{3 \mathrm{~S} 2}=0.0 \mathrm{~V} \end{aligned}$
Switch Control Logic HIGH	2.7	3.0		V	
Switch Control Logic LOW	0.0		0.4	V	
Switch Control Current		13.0	15.0	$\mu \mathrm{A}$	

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Antenna Switch Section					
Insertion Loss ANT-LNAin	0.9	1	1.1	dB	$\mathrm{V}_{1 \mathrm{~S} 2}=3.0 \mathrm{~V}, \mathrm{~V}_{2 \mathrm{~S} 2}=0.0 \mathrm{~V}, \mathrm{~V}_{3 \mathrm{~S} 2}=0.0 \mathrm{~V}$
Isolation ANT-LNAin	25	27		dB	$\begin{aligned} & \mathrm{v}_{1 \mathrm{~S} 2}=0.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 2}=3.0 \mathrm{~V}, \mathrm{v}_{3 \mathrm{~S} 2}=0.0 \mathrm{~V} \text { or } \\ & \mathrm{v}_{1 \mathrm{~S} 2}=0.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 2}=3.0 \mathrm{~V}, \mathrm{v}_{3 \mathrm{~S} 2}=0.0 \mathrm{~V} \end{aligned}$
ANT Return Loss (Thru Path)		-15	-14	dB	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~S} 1}=0.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 1}=3.0 \mathrm{~V}, \mathrm{v}_{3 \mathrm{~S} 1}=0.0 \mathrm{~V} \text { or } \\ & \mathrm{v}_{1 \mathrm{~S} 2}=0.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 2}=3.0 \mathrm{~V}, \mathrm{v}_{3 \mathrm{~S} 2}=0.0 \mathrm{~V} \end{aligned}$
ANT Return Loss (Transmit Path)			-9	dB	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~S} 1}=3.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 1}=0.0 \mathrm{~V}, \mathrm{v}_{3 \mathrm{~S} 1}=0.0 \mathrm{~V} \text { or } \\ & \mathrm{v}_{1 \mathrm{~S} 2}=0.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 2}=0.0 \mathrm{~V}, \mathrm{v}_{3 \mathrm{~S} 2}=3.0 \mathrm{~V} \end{aligned}$
ANT Return Loss (Receive Path)			-9	dB	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~S} 1}=0.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 1}=0.0 \mathrm{~V}, \mathrm{v}_{3 \mathrm{~S} 1}=3.0 \mathrm{~V} \text { or } \\ & \mathrm{v}_{1 \mathrm{~S} 2}=3.0 \mathrm{~V}, \mathrm{v}_{2 \mathrm{~S} 2}=0.0 \mathrm{~V}, \mathrm{v}_{3 \mathrm{~S} 2}=0.0 \mathrm{~V} \end{aligned}$
Switch Control Logic HIGH	2.7	3.0		V	
Switch Control Logic LOW	0.0		0.4	V	
Switch Control Current		13.0	15.0	$\mu \mathrm{A}$	

RF6509
rfmd.com

Pin	Function	Description
1	GND	Ground.
2	RX Filter Input	RF output to enter the Rx filter (if used), 50Ω nominal impedance.
3	V2S2	Logic input to the Tx Switch arm 2 , selects/deselects thru path if Logic high/low respectively, see truth table.
4	V1S2	Logic input to the Tx Switch arm 1, selects/deselects Low Noise Amplifier if Logic high/low respectively, see truth table.
5	GND	Ground.
6	ANT	RF output to Antenna for the Tx/thru path and RF input from Antenna for the Rx /thru path, 50Ω nominal impedance.
7	GND	Ground.
8	V3S2	Logic input to the Tx Switch arm 3, selects/deselects PA if Logic high/low respectively, see truth table.
9	NC	Not connected.
10	GND	Ground.
11	PA VCC2	Collector power supply for Power Amplifier. Nominal 3.6V.
12	GND	Ground.
13	NC	Not connected.
14	PA BIAS	Power supply for the PA Bias Network. Nominal 3.6V.
15	GND	Ground.
16	PA VREG	Voltage set to PA Bias Level. Nomial 2.85V.
17	PA VCC1	Collector power supply for PA driver stage. Nominal 3.6V.
18	NC	Not connected.
19	NC	Not connected.
20	PA IN	RF Input to the PA, 50Ω nominal impedance, needs to be connected externally to PA IN to SWITCH PIN through as short as possible 50Ω transmission line.
21	PA IN to SWITCH	PA input to be connected to the Rx Switch through this pin, 50Ω nominal Impedance.
22	V2S1	Logic input to the Rx switch arm 2, selects/deselects Thru path if Logic high/low respectively, see truth table.
23	V1S1	Logic input to the Rx switch arm 1, selects/deselects PA if Logic high/low respectively, see truth table.
24	GND	Ground.
25	RX OUT/TX IN	Transceiver IN/OUT.
26	GND	Ground.
27	V3S1	Logic input to the Rx switch arm 3, selects/deselects LNA if Logic high/low respectively, see truth table.
28	NC	Not connected.
29	LNA VCC	Collector power cupply for LNA. Nominal 3.0V.
30	LNA VSEL	A logic low selects the high gain mode of the LNA, logic high selects the low gain mode.
31	LNA VREF	Voltage to set the bias of the LNA, nominal 3.0V, can be adjusted to shut the LNA off or set the quiescent current of the LNA to desired level.
32	LNA IN	RF input to LNA, nominal impedance 50Ω, the Rx filter output should be connected to this pin, If Rx filter is bypassed, pin 2 should be connected to this pin htough an external 50Ω transmission line as short as possible.

Control Logic Table

SW1			SW2			LNA			PA			
V1S1	V2S1	V3S1	V1S2	V2S2	V3S2	$\begin{aligned} & \text { LNA } \\ & \text { VSEL } \end{aligned}$	LNA VREF	LNA VCC	PA VCC1 and 2	PA Bias	$\begin{gathered} \text { PA } \\ \text { VREG } \end{gathered}$	PATH
High	Low	Low	Low	Low	High	High	OFF	OFF	ON	ON	ON	Tx path thru PA
Low	High	Low	Low	High	Low	High	OFF	OFF	X*	OFF	OFF	Tx/Rx Thru path with 10 dB attenuation
Low	Low	High	High	Low	Low	Low	ON	ON	X*	OFF	OFF	Rx path thru LNA (High gain mode)
Low	Low	High	High	Low	Low	High	ON	ON	X*	OFF	OFF	Rx path thru LNA (Low gain mode)

High indicates logic High of $>2.7 \mathrm{~V}$ and Low indicates logic Low of $<0.2 \mathrm{~V}$.
*An X means that the state of the pin doesn't matter.

Pin Out

Package Drawing

Notes:

1. Shaded area represents Pin 1 location.

Evaluation Board Schematic

Note: 1. If extra isolation is needed between Tx and Rx path, the filter can be used otherwise for $\leq 50 \mathrm{~dB}$ isolation, 50Ω microstrip shoud be okay.

PCB Design Requirements

PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is $3 \mu \mathrm{inch}$ to 8μ inch gold over 180μ inch nickel.

PCB Land Pattern Recommendation

PCB land patterns are based on IPC-SM-782 standards when possible. The pad pattern shown has been developed and tested for optimized assembly at RFMD; however, it may require some modifications to address company specific assembly processes. The PCB land pattern has been developed to accommodate lead and package tolerances.

PCB Solder Mask Pattern

Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the PCB metal land pattern with a 2 mil to 3 mil expansion to accommodate solder mask registration clearance around all pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask clearance can be provided in the master data or requested from the PCB fabrication supplier.

Thermal Pad and Via Design

The PCB metal land pattern has been designed with a thermal pad that matches the die paddle size on the bottom of the device.

Thermal vias are required in the PCB layout to effectively conduct heat away from the package. The via pattern has been designed to address thermal, power dissipation and electrical requirements of the device as well as accommodating routing strategies.

The via pattern used for the RFMD qualification is based on thru-hole vias with 0.203 mm to 0.330 mm finished hole size on a 0.5 mm to 1.2 mm grid pattern with 0.025 mm plating on via walls. If micro vias are used in a design, it is suggested that the quantity of vias be increased by a $4: 1$ ratio to achieve similar results.

Notes:

1. Shaded area represents Pin 1 location.

Typical Performance

rfmd.com

Typical Performance

RoHS* Banned Material Content

RoHS Compliant:	Yes
Package total weight in grams (g):	0.038
Compliance Date Code:	0547
Bill of Materials Revision:	A
Pb Free Category:	e 3

Bill of Materials		Parts Per Million (PPM)					
		Cd	Hg	Cr VI	PBB	PBDE	
Die	0	0	0	0	0	0	
Molding Compound	0	0	0	0	0	0	
Lead Frame	0	0	0	0	0	0	
Die Attach Epoxy	0	0	0	0	0	0	
Wire	0	0	0	0	0	0	
Solder Plating	0	0	0	0	0	0	

This RoHS banned material content declaration was prepared solely on information, including analytical data, provided to RFMD by its suppliers, and applies to the Bill of Materials (BOM) revision noted above.

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Front End category:
Click to view products by Qorvo manufacturer:
Other Similar products are found below :
SE2622L-R BGM1032N7E6327XUSA1 LX5586LL LX5586HLL LX5586ALL SKY66111-21 SKY65728-11 SKY68000-31 SKY85308-11 SKY85302-11 SKY65724-11 ADTR1107ACCZ LMP91051MTX/NOPB SE5501L-R QPF4519SR SE5503A-R ADA8282WBCPZ ADRF5545ABCPZN ADRF5545ABCPZN-R7 AD8283WBCPZ AD8284WCSVZ ADRF5547BCPZN ADRF5547BCPZN-R7 ADRF5549BCPZN ADRF5549BCPZN-R7 HV7350K6-G SE5516A-R MCP2030-I/SL MAX2009ETI+ MAX2078CTK+ MAX2335ETI+ MAX2678GTB/V+T MD2131K7-G MD2134K7-G RFFM6903TR13 HV7351K6-G MCP2035-I/ST SE2614BT-R SE2438T-R SST12LF02QXCE SST12LF09-Q3CE RFX2401C RFX2402E SKY85201-11 RFFM4591FTR7 RFFM8211TR7 RFFM4293TR7 RFFM4203TR7 RFFM5765QTR7 RFFM8200TR7

[^0]: * DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

