

6-Bit, PAC (Programmable Array of Capacitors)

The RFAC3612 is a 6-bit, 64-state PAC (Programmable Array of Capacitors) for tunable RF applications. The RFAC3612 is optimized for series configuration but can also be applied in shunt configuration. The high power handling, high Q and excellent linearity makes it ideal for use in antenna tuning, tunable filters and tunable matching networks.

The RFAC3612 includes an integrated LDO (Low Drop Out) regulator, which enables operation from a very wide supply range from 2.4V to 3.5V. The state of the RFAC3612 PAC is controlled by a 3 wire SPI compatible interface. All pins are ESD protected to ensure 2kV HBM ESD tolerance. RFAC3612 is packaged in a very compact 2.0mm x 2.5mm, 10-pin package.

Functional Block Diagram

Ordering Information

RFAC3612SQ	Sample bag with 25 pieces
RFAC3612SR	7" Reel with 100 pieces
RFAC3612TR7	7" Reel with 2500 pieces
RFAC3612PCK-410	0.5GHz to 3GHz PCBA with 5-piece sample bag

Package: 10-pin, 2.0mm x 2.5mm

Features

- 6-Bit, 64-state Programmable Capacitor Array
- 3 Wire SPI Compatible Control
- Programmable Shunt Switches on Both RF Ports for High Isolation Operation
- Wide Tuning Range (0.47pF to 13pF)
- High RF Voltage Handling (≤44VPK)
- High Linearity
- Wide Voltage Supply Range (2.4V to 3.5V)
- Low Current Consumption (64µA Typical)
- 2kV HBM EDS Tolerance on All Ports
- Simulate in Your Design with ADS or AWR S-parameter Model Kit, available on request

Applications

- Antenna Tuning Networks
- Tunable RF Filters
- Tunable RF Matching Networks
- Phase Shifters

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS140530

RF MICRO DEVICES[®] and RFMD[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

Absolute Maximum Ratings

Parameter	Rating	Unit
Power Supply Voltage (V _{DD})	-0.3 to 3.9	V
Logic Input DC Voltage (V _{CB})	-0.3 to 2.8	V
ESD Voltage HBM	2	kV
Storage Temperature	-40 to 150	°C
Max peak Single-ended RF Voltage Between RF1/RF2	RF1 = 45	Vрк
and Ground, Shunt Switches Disabled	RF2 = 43	Vрк
CW Input Power, 50 Ω Systems, RF1 or RF2, Cmin, Shunt Switches Disabled	37	dBm
CW Input Power, 50 Ω Systems, Shunt, RF1, Cmin, Shunt Switches Disabled	42.5	dBm
CW Input Power, 50 Ω Systems, RF1 or RF2, Shunt Switches Enabled	29	dBm

Caution! ESD sensitive device.

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000pm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Recommended Operating Condition

Parameter	S	Unit		
	Min	Тур	Max	Onic
Operating Temperature Range	-40		+85	°C
Operating Junction Temperature				°C
Supply Voltage	2.4		3.5	V

Electrical Specifications

Parameter	Specification				Condition			
Farameter	Min	Тур	Max	Unit	Condition			
Operating Ranges								
Power Supply Current (IDD)		63	85	μA	RF1 = -10dBm			
Input Logic Control Voltage High (VIH)	1.2		2.8	V				
Input Logic Control Voltage Low (VIL)	0		0.63	V				
Max Peak Single-ended RF Voltage Between			44	Vpk	RF1			
RF1/RF2 and GND (V _{RF PK})			42	Vpk	RF2			
Input Power with RF1 and/or RF2 Shunt Switches Enabled			27	dBm				
DC Voltage at RF1 and RF2 Ports (V_{RF, DC}) 1		0		V				
Operating Frequency Range	0.5		3	GHz				
Series Configuration, Linear Parameters					Nominal Conditions: V _{HIGH} ≥1.8V, V _{LOW} ≤0.3V, VDD = 2.85V, Temp = 25°C, RF1 and RF2 ports terminated to Z0 = 50Ω			
Cs ²								
Min Series Capacitance, State 0	0.41	0.46	0.51	pF				

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

RF MICRO DEVICES® and RFMD® are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

DS140530

Demonster	Sp	ecificat	ion	1114				
Parameter	Min	Тур	Max	Unit	Condition			
Series Capacitance, State 1	0.59	0.66	0.72	pF				
Series Capacitance, State 2	0.77	0.86	0.91	pF				
Series Capacitance, State 4	1.13	1.26	1.38	pF				
Series Capacitance, State 8	1.85	2.05	2.26	pF				
Series Capacitance, State 16	3.28	3.64	4.01	pF				
Series Capacitance, State 32	6.15	6.83	7.51	pF				
Max Series Capacitance, State 63	11.7	13	14.3	pF				
Capacitance Step (C _{STEP SERIES})		0.2		pF				
Port Capacitance to Ground (Cp) ²		0.4		pF				
Total Series Inductance – Two Sided (Ls) ²		0.8		nH				
Series Self-resonance Frequency (f _{RES} series)								
State 16		2700		MHz				
State 32		2130		MHz				
State 63		1625		MHz				
Rp1 ²		2.5		Ω				
Rp2 ²		16		Ω	When either shunt switch is on, the Rp2 on that side reduces to this value			
		4800		Ω	Normal operation with shunt switches open			
Quality Factor (RF2 Port Grounded, Inductance Removed) (Q)								
State 0		23						
State 31		17			f = 1GHz			
State 63		15						
State 0		42			f = 2GHz			
State 31		8						
Series Configuration, Nonlinear Parameters								
Second Harmonic, 2-f ₀ (P _{2H SERIES})								
States 0 to 3		-72	-43	dBm	$P_{FWD} = 35 dBm, f_0 = 900 MHz$			
States 4 to 63		-55	-40	dBm	$P_{FWD} = 36 dBm, f_0 = 900 MHz$			
States 0 to 63		-70		dBm	P _{FWD} = 33dBm, f ₀ = 1910MHz			
Third Harmonic, 3-f ₀ (P _{3H SERIES})								
States 0 to 7		-60	-34	dBm	$P_{FWD} = 35 dBm, f_0 = 900 MHz$			
States 8 to 63		-59	-40	dBm	P _{FWD} = 36dBm, f ₀ = 900MHz			

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS140530

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Deservator	Sp	ecificat	ion	Unit	Condition			
Parameter	Min	Тур	Max	Unit				
States 0 to 63		-65		dBm	P _{FWD} = 33dBm, f ₀ = 1910MHz			
Series Configuration, Nonlinear Parameters – Cont.								
Input IP2 – States 0 to 63 (IP2 _{SERIES})								
Cell Low		115		dBm				
Cell High		132		dBm	See IP2 / IP3 test conditions table below			
IMT Low		129		dBm				
IMT High		130		dBm				
GPS Test 1		140		dBm	See IP2 / IP3 test conditions table below			
GPS Test 2		140		dBm				
Band 8 (800MHz to 960MHz)		126		dBm	Tone 1 at 20dBm			
Bands 2, 4, 7, 11 (1428MHz to 2690MHz)		128		dBm	Tone 2 at -15dBm			
Input IP3 (States 0 to 63 (IP3 _{SERIES})								
Cell (B5)		75		dBm				
IMT (B1)		76		dBm	See IP2 / IP3 test conditions table below			
SV – LTE Test 1		77		dBm	See IP2 / IP3 test conditions table below			
SV – LTE Test 2		85		dBm				
Band 8 (800MHz to 960MHz)		76		dBm	Tone 1 at 20dBm			
Bands 2, 4, 7, 11 (1428MHz to 2690MHz)		70		dBm	Tone 2 at -15dBm			
RF1 to RF2 Spurious (all States								
No RF		-120		dBm	400MHz to 2700MHz			
915MHz at 35dBm		-112		dBm	925MHz to 960MHz			
1910MHz at 33dBm		-113		dBm	1930MHz to 1990MHz			
General Electrical Specifications								
Power-up Time (tPOWER-UP)		75		μs	Time from VDD within specification to all specifications is met.			
Switching Time-Small Signal (t _{SWITCH, SS})		15		μs	Time from programming (falling edge of SCLK of the 16 th bit) to 90% of capacitance change achieved			
Stitching Time – Large Signal (t _{SWITCH, LS})		75		μs	Time from programming (falling edge of SCLK of the 16 th bit) to power handling and linearity specifications are met			
3-Wire Interface Timing Characteristics								
Serial Clock Frequency ($f_{SCLK} = 1/t_{SCLK}$) ³			26	MHz				
Clock High and Low Time (t _{SCLKHIGH} , t _{SCLKLOW})	0.45 x t _{SCLK}		0.55 х t _{SCLK}					
Falling Edge of CS to Rising Edge of SCLK Set-up Time, Start of Telegram (t _{CS_SCLK})	10			ns				

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

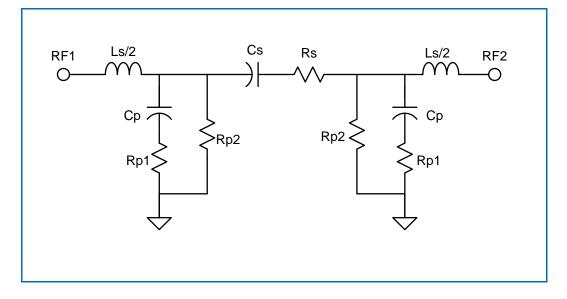
For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

DS140530

Parameter	Sp	ecificat	ion	Unit	Condition
	Min	Тур	Max	Onit	Condition
Falling Edge of SCLK to Rising Edge of CS Set-up Time, End of Telegram (t _{SCLK_SC})	20			ns	
3-Wire Interface Timing Characteristics – Cont.					
SDATA to Falling Edge of SCLK Set-up Time (tsDATA_SCLK)	10			ns	
SDATA Hold Time After Falling Edge of SCLK (t_{SDATA})	10			ns	
CS High Time for Activation of Programmed Bits (t _{CSHIGH})	100			ns	

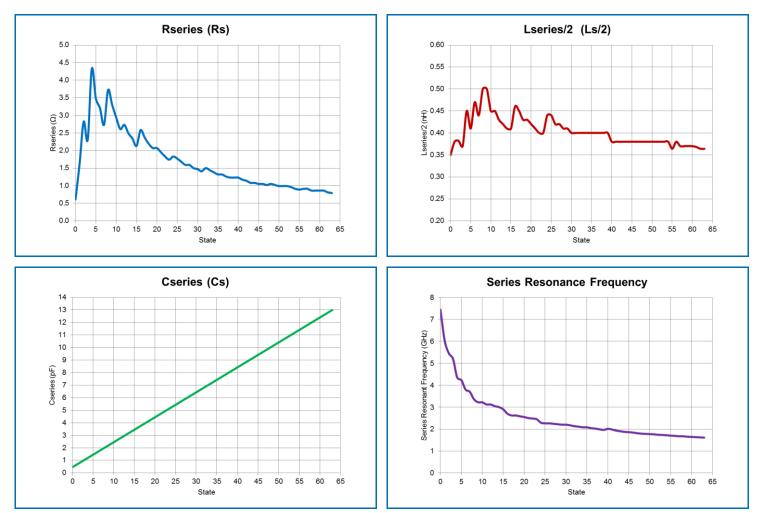
NOTES:


1. RF1 and RF2 ports are internally DC coupled and should not have any non-zero DC bias voltage during operation.

2. Equivalent circuit below for C_S, Cp, R_S, L_{S/2}, Rp1, and Rp2

3. Corresponds to a minimum clock cycle time of 38.5ns.

Equivalent Model



Equivalent Circuit Model Parameters

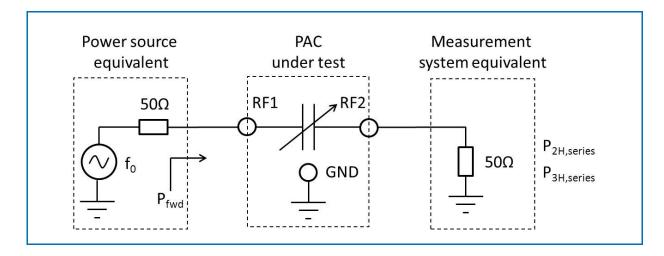
Variable	Equation (State = 0, 1,, 63	Units
Cs	0.199 * state + 0.46	pF
Rs	37 / (State + 35 / (state + 0.3)) +0.25	Ω
Rp1	2.5	Ω
Rp2	4800	Ω
Ср	0.4	pF
Ls/2	0.4	nH

NOTE: Equivalent circuit will provide simulation results very close to actual, but for best accuracy request s-parameters kit.

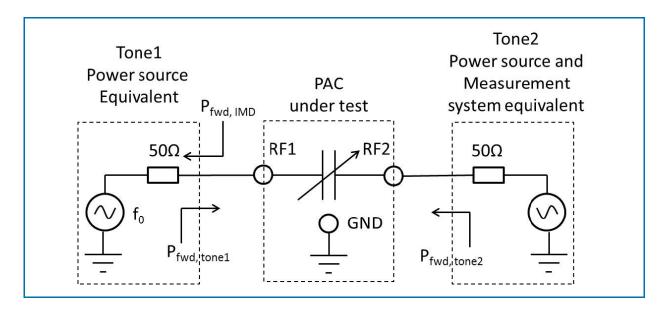
Typical Performance: $T = 25^{\circ}C$, $V_{DD} = 5V$ unless otherwise noted

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third paties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.


IP2 / IP3 Test Conditions

Band	In-band Frequency	CW 1	one 1	CW To	one 2
Danu	MHz	MHz	dBm	MHz	dBm
IP2 Test Conditions					
Cell Low (Band V)	881.5	836.5	+20	45	-15
Cell High (Band V)	881.5	836.5	+26	1718	-20
IMT Low (Band I)	2140	1950	+20	190	-15
IMT High (Band I)	2140	1950	+26	4090	-20
GPS Test Conditions					
GPS Test 1	1575	909	+21	2484	+1.5
GPS Test 2	1575	909	+14	2484	+1.5
IP3 Test Conditions					
Cell (Band V)	881.5	836.5	+26	791.5	-20
IMT (Band I)	2140	1950	+26	1760	-20
SV-LTE Test Conditions					
SV-LTE Test 1	747	825	+11	786	+24
SV-LTE Test 2	872	827	+11	782	+24



Test Set-up

Series Configuration Harmonics Measurement Set-up

Series Configuration IMDs Measurement Set-up

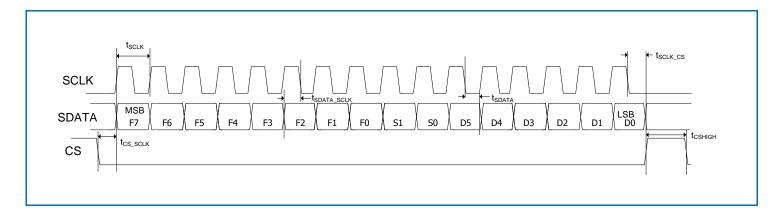
DS140530

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Test Set-up

The RFAC3612 is controlled by a single direction 3-wire SPI compatible interface. The RFAC3612 has 3 logic input pins for:

SCLK: Serial Input, SDATA: Serial Data Input; CS: Chip Select


The serial master initiates the start of the telegram by driving the chip select signal CS low. Each bit in the 16-bit telegram is clocked in by the slave on the falling edge of SCLK.

SDATA bits consist of 3 groups:

F0 to F7: are fixed bits, these do not change.

S0 to S1: controls the RF1 and RF2 shunt switches

D5 to D0: is the 6-bit data word, used for controlling the PAC. SDATA bits are clocked in the order shown below, with D5 being the first bit. The PAC activates the clocked values of SDATA on the falling edge of SCLK of the 16th bit.

A quick overview of the telegram bits is shown below.

Telegram Bits	Function and Description
F0-F7	8-bit set of fixed bits, must be set to 00100000
S1	Data bit S1, controls shunt switch on port RF2. 0 = shunt switch is Off, 1 = shunt switch is On. After power-up the value of S1 is 0, i.e. shunt switch is Off.
SO	Data bit S0, controls shunt switch on port RF1. 0 = shunt switch is Off, 1 = shunt switch is On. After power-up the value of S0 is 0, i.e. shunt switch is Off.
D0-D5	Data bit D0-D5, controls the state of PAC. (D5 is most significant bit, D0 is least significant bit). After power- up the value of D0-D5 is 000000, i.e. state 0.

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS140530

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Equivalent Circuit Parameters

	S1	S0	D5	D4	D3	D2	D1	D0	Rs (Ω)	Ls/2 (nH)	Cs (pF)
State 0	0	0	0	0	0	0	0	0	0.61	0.35	0.46
State 1	0	0	0	0	0	0	0	1	1.62	0.38	0.66
State 2	0	0	0	0	0	0	1	0	2.82	0.38	0.86
State 3	0	0	0	0	0	0	1	1	2.31	0.37	1.06
State 4	0	0	0	0	0	1	0	0	4.32	0.45	1.26
State 5	0	0	0	0	0	1	0	1	3.48	0.41	1.46
State 6	0	0	0	0	0	1	1	0	3.21	0.47	1.65
State 7	0	0	0	0	0	1	1	1	2.73	0.44	1.85
State 8	0	0	0	0	1	0	0	0	3.72	0.50	2.05
State 9	0	0	0	0	1	0	0	1	3.30	0.50	2.25
State 10	0	0	0	0	1	0	1	0	2.94	0.45	2.45
State 11	0	0	0	0	1	0	1	1	2.61	0.45	2.65
State 12	0	0	0	0	1	1	0	0	2.73	0.43	2.85
State 13	0	0	0	0	1	1	0	1	2.49	0.42	3.05
State 14	0	0	0	0	1	1	1	0	2.34	0.41	3.25
State 15	0	0	0	0	1	1	1	1	2.13	0.41	3.45
State 16	0	0	0	1	0	0	0	0	2.58	0.46	3.64
State 17	0	0	0	1	0	0	0	1	2.37	0.45	3.84
State 18	0	0	0	1	0	0	1	0	2.19	0.43	4.04
State 19	0	0	0	1	0	0	1	1	2.07	0.43	4.24
State 20	0	0	0	1	0	1	0	0	2.07	0.42	4.44
State 21	0	0	0	1	0	1	0	1	1.95	0.41	4.64
State 22	0	0	0	1	0	1	1	0	1.83	0.40	4.84
State 23	0	0	0	1	0	1	1	1	1.74	0.40	5.04
State 24	0	0	0	1	1	0	0	0	1.83	0.44	5.24
State 25	0	0	0	1	1	0	0	1	1.77	0.44	5.44
State 26	0	0	0	1	1	0	1	0	1.68	0.42	5.63
State 27	0	0	0	1	1	0	1	1	1.59	0.42	5.83
State 28	0	0	0	1	1	1	0	0	1.59	0.41	6.03
State 29	0	0	0	1	1	1	0	1	1.50	0.41	6.23
State 30	0	0	0	1	1	1	1	0	1.47	0.40	6.43
State 31	0	0	0	1	1	1	1	1	1.41	0.40	6.63
State 32	0	0	1	0	0	0	0	0	1.50	0.40	6.83
State 33	0	0	1	0	0	0	0	1	1.44	0.40	7.03
State 34	0	0	1	0	0	0	1	0	1.38	0.40	7.23

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS140530

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

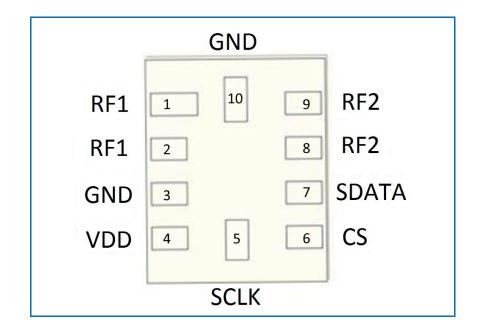
The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

	S1	S0	D5	D4	D3	D2	D1	D0	Rs (Ω)	Ls/2 (nH)	Cs (pF)
State 35	0	0	1	0	0	0	1	1	1.32	0.40	7.43
State 36	0	0	1	0	0	1	0	0	1.32	0.40	7.62
State 37	0	0	1	0	0	1	0	1	1.26	0.40	7.82
State 38	0	0	1	0	0	1	1	0	1.23	0.40	8.02
State 39	0	0	1	0	0	1	1	1	1.23	0.40	8.22
State 40	0	0	1	0	1	0	0	0	1.23	0.38	8.42
State 41	0	0	1	0	1	0	0	1	1.17	0.38	8.62
State 42	0	0	1	0	1	0	1	0	1.14	0.38	8.82
State 43	0	0	1	0	1	0	1	1	1.08	0.38	9.02
State 44	0	0	1	0	1	1	0	0	1.08	0.38	9.22
State 45	0	0	1	0	1	1	0	1	1.05	0.38	9.42
State 46	0	0	1	0	1	1	1	0	1.05	0.38	9.61
State 47	0	0	1	0	1	1	1	1	1.02	0.38	9.81
State 48	0	0	1	1	0	0	0	0	1.05	0.38	10.01
State 49	0	0	1	1	0	0	0	1	1.02	0.38	10.21
State 50	0	0	1	1	0	0	1	0	0.99	0.38	10.41
State 51	0	0	1	1	0	0	1	1	0.99	0.38	10.61
State 52	0	0	1	1	0	1	0	0	0.99	0.38	10.81
State 53	0	0	1	1	0	1	0	1	0.96	0.38	11.01
State 54	0	0	1	1	0	1	1	0	0.91	0.38	11.21
State 55	0	0	1	1	0	1	1	1	0.89	0.36	11.41
State 56	0	0	1	1	1	0	0	0	0.91	0.38	11.60
State 57	0	0	1	1	1	0	0	1	0.91	0.37	11.80
State 58	0	0	1	1	1	0	1	0	0.86	0.37	12.00
State 59	0	0	1	1	1	0	1	1	0.86	0.37	12.20
State 60	0	0	1	1	1	1	0	0	0.86	0.37	12.40
State 61	0	0	1	1	1	1	0	1	0.86	0.37	12.60
State 62	0	0	1	1	1	1	1	0	0.81	0.36	12.80
State 63	0	0	1	1	1	1	1	1	0.79	0.36	13.00

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

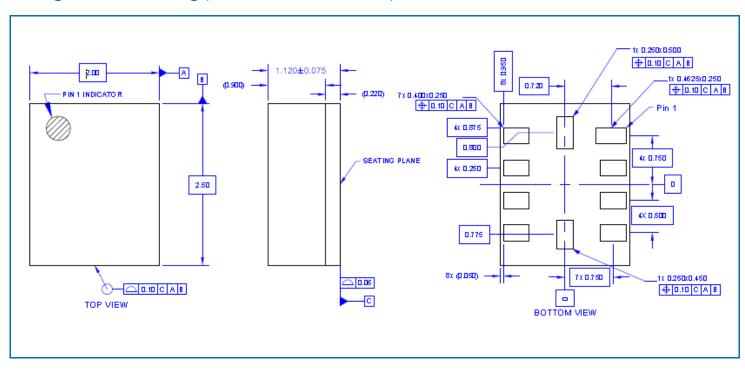
DS140530


The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Shunt Switch Table

RF1 Shunt Switch	RF2 Shunt Switch	S 1	S 0
Off	Off	0	0
On	Off	0	1
Off	On	1	0
On	On	1	1

Pin Configuration Top View


Pin Names and Descriptions

Pin	Name	Description
1	RF1	RF Terminal 1 of PAC
2	RF1	RF Terminal 1 of PAC
3 ¹	GND	Ground Pins
4	VDD	Power Supply Pin
5	SCLK	Serial Interface Clock Signal
6	CS	Enable Pin
7	SDATA	Serial Interface Data Signal
8	RF2 ²	RF Terminal 2 of PAC
9	RF2 ²	RF Terminal 2 of PAC
10 ¹	GND	Ground Pins

Notes:

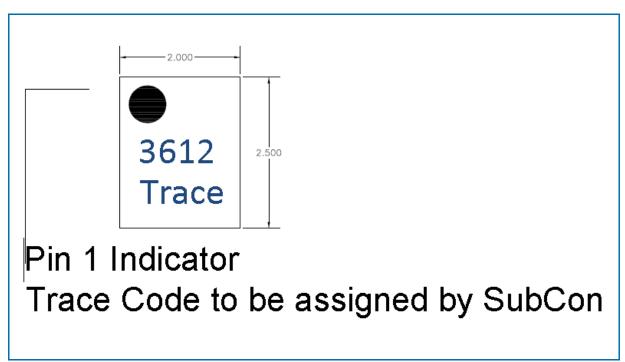
- 1. 2 ground pins are connected internally on die. The 2 pins should all be connected to PCB GND.
- 2. When operating the PAC in shunt configuration, it is recommended to ground RF2 rather than RF1.

Package Outline Drawing (Dimensions in millimeters)

Evaluation Board Available with 1 Port Shunt and 2 Port Series Configurations

Application Guidelines

A decoupling capacitor on VDD may be used for noise reduction. The one directional 3-wire SPI compatible interface with chip select is a very robust interface for on-board inter chip signaling. To further improve the robustness of the interface RFMD uses input level hysteresis on the 3 logic inputs. This gives good immunity to noise on the input lines.


The PAC is DC coupled on RF1 and RF2 ports, with a bias voltage of 0V. This means that the RF ports can be DC shorted to GND, by e.g. an inductor, but they cannot be connected to any other device with a non-zero bias voltage without a DC blocking capacitor.

Application Note

Turn On Sequence = VDD \rightarrow SPI \rightarrow RF

Turn Off Sequence = $\text{RF} \rightarrow \text{SPI} \rightarrow \text{VDD}$

Branding Diagram

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Trimmer/Variable Capacitors category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

 GKY20086
 GNC8R050
 GXA18000
 GXA36000
 GXC90000
 GXE5R000NM
 GXL10000
 GZN60100
 PC50H230
 PC50J110
 PC51H230

 GDT40026
 GKU90020
 GNR4R550
 GNR8R050
 GXL15000
 538-011 D 9-35LF
 PC39G520
 STPTIC-56G2C5
 27271LSL
 27281SL

 STPTIC-82G2C5
 27283-3R10
 GNL8R050
 GYB5R000
 0538-006-F-15.0-60LF
 GXL18000
 GHC5R500
 GZD80000
 TP11G
 KT1SD
 KF8

 KP8
 KM8
 KG8
 KJ8
 KT8
 KG10
 KP10
 KM10
 TP42C
 NMAJ25HV
 KF4SD
 KJ1SD
 KM4SD
 KT4SD
 KP4SD