

RFRP2241

5MHZ TO 100MHZ 30DB REVERSE HYBRID (LOW CURRENT, LOW NOISE)

The RFRP2241 is a hybrid reverse amplifier. The part employs a silicon die. It has extremely low distortion and superior return loss performance. The part also provides optimal reliability with low noise and is well suited for 5MHz to 100MHz CATV amplifiers for reverse channel systems.

Functional Block Diagram

Ordering Information

RFRP2241 Box with 50 pieces

Package: SOT-115J

Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- 30.1dB Typical Gain at 100MHz
- 135mA Max. at 24VDC

Applications

- Broadband/CATV
- 5MHz to 100MHz CATV Amplifier For Reverse Channel Systems

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	65	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Temperature	-30 to +100	°C

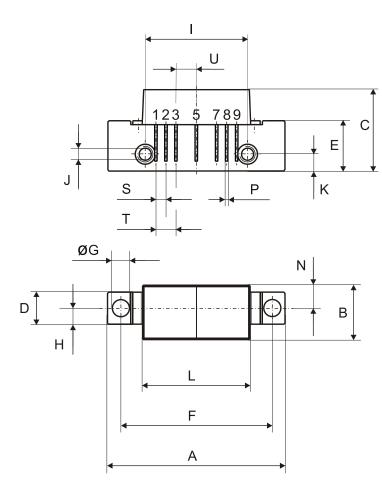
Caution! ESD sensitive device.

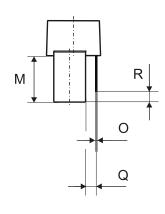
RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2011/65/EU.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

Parameter	Specification		Unit	Condition		
Parameter	Min	Тур	Max	Unit	Condition	
General Performance					VB= 24V; TMB=30°C; ZS=ZL=75Ω	
Operating Frequency Range	5		100	MHz		
Power Gain	29.5	30.0	30.5	dB	f=5MHz	
	29.3	30.1		dB	f=100MHz	
Slope [1]	-0.2	0.1	0.5	dB	f=5MHz to 100MHz	
Flatness of Frequency Response			±0.3	dB	f=5MHz to 100MHz	
Input Return Loss	-20			dB	f=5MHz to 100MHz	
Output Return Loss	-20			dB	f=5MHz to 100MHz	
Noise Figure		2.5	3.0	dB	f=100MHz	
Total Current Consumption (DC)	125.0	130.0	135.0	mA		
Distortion data 5MHz to 100MHz					VB= 24V; TMB=30°C; ZS=ZL=75Ω	
СТВ		-66	-64	dBc	7 ch. flat; V ₀ =50dBmV ^[2]	
			-61	dBc	12 ch. flat; V ₀ =50dBmV ^[3]	
XMOD		-57	-55	dBc	7 ch. flat; V ₀ =50dBmV ^[2]	
			-51	dBc	12 ch. flat; V ₀ =50dBmV ^[3]	
CSO		-70	-68	dBc	7 ch. flat; V _o =50dBmV ^[2]	
			-68	dBc	12 ch. flat; V ₀ =50dBmV ^[3]	


Notes:


- 1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.
- 2. 7 channels, NTSC frequency raster: T7-T13 (7.0MHz to 43MHz), +50dBmV flat output level.
- 3. 12 channels NTSC frequency raster: T7-T13 (7.0MHz to 43MHz), 2-6 (55.25MHz to 83.25MHz), +50dBmV flat output level.

Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA. Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA. Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.

Package Outline and Pin Out

Pinning:

0 5 10mm

INPUT	1
GND	2
GND	3
	4
+VB	5
	6
GND	7
GND	8
OUTPUT	9

Notes:

All Dimensions in mm:

	nominal	min	max
Α	44,6 ^{± 0,2}	44,4	44,8
В	13,6 ^{± 0,2}	13,4	13,8
С	20,4 ^{± 0,5}	19,9	20,9
D	8 ^{± 0,15}	7,85	8,15
Е	12,6 ^{± 0,15}	12,45	12,75
F	38,1 ^{± 0,2}	37,9	38,3
G	4 +0,2 / -0,05	3,95	4,2
Н	4 ^{± 0,2}	3,8	4,2
	25,4 ^{± 0,2}	25,2	25,6
J	UNC 6-32	-	-
К	4,2 ^{± 0,2}	4,0	4,4
L	27,2 ^{± 0,2}	27,0	27,4
М	11,6 ^{± 0,5}	11,1	12,1
N	5,8 ^{± 0,4}	5,4	6,2
0	0,25 ^{± 0,02}	0,23	0,27
Р	0,45 ^{± 0,03}	0,42	0,48
Q	2,54 ^{± 0,3}	2,24	2,84
R	2,54 ^{± 0,5}	2,04	3,04
S	2,54 ^{± 0,25}	2,29	2,79
Т	5,08 ^{± 0,25}	4,83	5,33
U	5,08 ^{± 0,25}	4,83	5,33

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310