Product Overview

The RFSW1012 is a single-pole double-throw (SPDT) switch designed for applications requiring very low insertion loss and high power handling capability. The excellent linearity performance of the RFSW1012 makes it ideal for use in LTE, WCDMA, and CDMA applications. This switch is ideally suited for use in CATV and SATV applications.

The RFSW1012 is packaged in a compact $2 \mathrm{~mm} \times 2 \mathrm{~mm}$, 12-pin, QFN package.

\author{

RFSW1012 Broadband SPDT Switch

}

Key Features

- 5 MHz to 6000 MHz Operation
- 50Ω or 75Ω Applications
- Low Insertion Loss: 0.30 dB at 1980 MHz
- High Isolation: 37 dB at 2 GHz
- High IP3: >75dBm at 2 GHz
- Compatible with Low Voltage Logic ($\mathrm{V}_{\text {нія }}$ Minimum $=$ 1.3V)
- No External DC Blocking Capacitors Required on RF Paths Unless DC is Applied Externally
- 2000V HBM ESD Rating on All Ports
- CTB/CSO: >100dBc ($41 \mathrm{dBmV} / \mathrm{ch}$., 137 Channels)

Applications

- LTE, WCDMA, GSM
- CATV, SATV Applications
- Post PA Switching
- General Purpose Switching Applications

Ordering Information

Part No.	Description
RFSW1012SR	7" Sample reel with 100 pieces
RFSW1012TR13	13" Reel with 2500 pieces
RFSW1012PCK-411	50Ω PCBA with 5-piece sample bag
RFSW1012PCK-410	75 PCBA with 5-piece sample bag

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-50 to $150^{\circ} \mathrm{C}$
V_{DD}	+6 V
$\mathrm{~V}_{\text {EN }}, \mathrm{V}_{\mathrm{CTRL}}$	+3 V
Hot-Switching Max Pin $(50 \Omega$ load $)$	20 dBm
	$+31 \mathrm{dBm}(5-25 \mathrm{MHz})$
Pin max (CW)	$+34 \mathrm{dBm}(25-500 \mathrm{MHz})$
	$+37 \mathrm{dBm}(>500 \mathrm{MHz})$
Pin max (LTE, 9dB PAR, $\left.1 \%, 105^{\circ} \mathrm{C}\right)$	$+32 \mathrm{dBm}(700-6000 \mathrm{MHz}, 2: 1 \mathrm{VSWR})$

Recommended Operating Conditions

Parameter	Min			Typ		Max	Units
$\mathrm{V}_{\text {DD }}$	+2.7	+5	+5.5	V			
$\mathrm{~T}_{\text {CASE }}$	-40		+90	${ }^{\circ} \mathrm{C}$			
Tj at $\mathrm{MTTF}>10^{6} \mathrm{hrs}$			125	${ }^{\circ} \mathrm{C}$			

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Operation of this device outside the parameter ranges given above may cause permanent damage.

Electrical Specifications - 50Ω System

Test conditions, unless otherwise noted: Temp $=25^{\circ} \mathrm{C}, \mathrm{VDD}=+3 \mathrm{~V}$. All RF ports terminated in 50Ω.

Parameter	Conditions	Min	Typ	Max	Units
Operational Frequency Range		5		6000	MHz
Insertion Loss	915MHz		0.25	0.45	dB
	1980 MHz		0.30	0.51	dB
	2650 MHz		0.40		dB
	5850 MHz		0.45		dB
Isolation, RFC-RFX	915 MHz	38	45		dB
	1980MHz	33	37		dB
	2650 MHz	29	33		dB
	5850 MHz		21		dB
Isolation (RF1-RF2)	915 MHz	37	42		dB
	1980MHz	30	35		dB
	2650 MHz	28	32		dB
	5850 MHz		21		dB
Return Loss (On-State)			>15		dB
Input IP3	2.2GHz, 24dBm per tone, 1 MHz tone spacing		75		dBm
Input IP2	Tone 1: 836.5 MHz at +26 dBm ; Tone 2: 1718 MHz at -20 dBm , Rx freq: 881.5 MHz		129		dBm
	Tone 1: 1880 MHz at +26 dBm ; Tone $2: 3840 \mathrm{MHz}$ at -20 dBm , Rx freq: 1960 MHz		129		dBm
Max Operating Pin	$5-25 \mathrm{MHz}, 50 \Omega$ load			30	dBm
	$25-500 \mathrm{MHz}, 50 \Omega$ load			33	dBm
	$>500 \mathrm{MHz}, 50 \Omega$ load			36	dBm
P0.1dB	$>100 \mathrm{MHz}$	41			dBm
Second Harmonic	900 MHz		-95	-75	dBc
	1800 MHz		-95	-75	dBc
Third Harmonic	900 MHz		-90	-75	dBc
	1800 MHz		-90	-75	dBc
Spurious Output	$>5 \mathrm{MHz}$, all ports terminated, no RF inputs		<-105		dBm
	$<5 \mathrm{MHz}$, all ports terminated, no RF inputs		<-100		dBm
Max Input Power	$<400 \mathrm{MHz}, 50 \Omega$ load			34	dBm
	$>400 \mathrm{MHz}, 50 \Omega$ load			36	dBm
Device Voltage, V_{DD}		2.7	3	4.6	V
Leakage Current, I_{DD}	$\mathrm{V}_{\text {EN }}=$ High		100	200	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {EN }}=$ Low		14	20	$\mu \mathrm{A}$
Control Voltage ($\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\text {ctriL }}$)	Logic High	1.3	1.8	2.7	V
	Logic Low		0	0.45	V
Control Current	$\mathrm{V}_{\text {ctRL }}=$ High, $\mathrm{V}_{\text {EN }}=$ High		2.5	5	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {CTRL }}=$ Low, $\mathrm{V}_{\text {EN }}=$ High		1	3	$\mu \mathrm{A}$
Switching Speed	50\% Control to 10\%/90\% RF		2	5	$\mu \mathrm{s}$

Electrical Specifications - 75Ω System
Test conditions, unless otherwise noted: $\mathrm{Temp}=25^{\circ} \mathrm{C}, \mathrm{VDD}=+3 \mathrm{~V}$. All RF ports terminated in 50Ω.

Parameter	Conditions	Min	Typ	Max	Units
Operational Frequency Range		5		2500	MHz
Insertion Loss	5 MHz		0.15		dB
	200 MHz		0.2		dB
	915 MHz		0.3	0.45	dB
	1980 MHz		0.35	0.5	dB
	2200 MHz		0.45		dB
Isolation, RFC-RFX	5 MHz		70		dB
	200 MHz		50		dB
	915 MHz		36		dB
	1980 MHz		28		dB
	2200 MHz		26		dB
Isolation, RF1-RF2	5 MHz		>70		dB
	200 MHz		>70		dB
	915 MHz		48		dB
	1980 MHz		34		dB
	2200 MHz		32		dB
Return Loss (On-State)	Freq <1200 MHz		>15		dB
	$1200-2500 \mathrm{MHz}$		>13		dB
CSO	$41 \mathrm{dBmV} / \mathrm{ch}, 137$ channels)		>100		dBc
CTB	$41 \mathrm{dBmV} / \mathrm{ch}, 137$ channels)		>100		dBc
XMOD	$41 \mathrm{dBmV} / \mathrm{ch}, 137$ channels)		>90		dBc
Max Operating Input Power	$5-25 \mathrm{MHz}, 75 \Omega$ load			30	dBm
	$25-500 \mathrm{MHz}, 75 \Omega$ load			33	dBm
	$>500 \mathrm{MHz}, 75 \Omega$ load			36	dBm

Logic Table

$\mathbf{V}_{\text {CTRL }}$	V $_{\text {EN }}$	RFC-RF1	RFC-RF2
1	1	OFF	ON
0	1	ON	OFF
X	0	OFF	OFF
VDD $=2.7-4.6 \mathrm{~V}$			

Power Up/Down and Operational Controls

Scenario 1	Sequence for power up and power down from the phone battery or supply that is connected to RFSW1012 VBATT Pin.
Power Up	Turn on VBATT (supply), then EN, then CTRL. Then (20mS or greater), apply RF signal
Power Down	Turn off RF signal, then CTRL, then EN, turn off VBATT (supply)
Scenario 2	Sequence for going in and out of a shutdown mode, keeping the VBATT or supply on, but disabling / enabling the RFSW1012 by the EN pin
Power Up	Turn on EN (enable), then CTRL, then (5mS or greater), turn on RF Signal
Power Down	Turn off RF signal, then CTRL, then EN (disable)
Scenario 3	When changing switch positions between RF1 and RF2, no RF signal should be applied to any RF port while the CTRL is changing states
Switching Ports	Turn off RF signal, then change CTRL state, then wait (5mS or greater), then turn on RF signal

Application Circuit Schematic and Layout

Bill of Material

Ref Des		Value	Description	Manuf.		Part Number
		50Ω PCB, SW1012-411	Qorvo			
		75Ω PCB, SW1012-410	Qorvo			
U1	na	High Isolation SPDT Switch, 2X2 QFN	Qorvo	RFSW1012		
C1	10000 pF	CAP, 0402, $10 \%, 25 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$	Various			
C2, C3	100 pF	CAP, 0402,5\%,50V, C0G	Various			

RFSW1012 Broadband SPDT Switch

Performance Plots - 50Ω

RFSW1012

Performance Plots Contd. - 50Ω

RFSW1012 Broadband SPDT Switch

Performance Plots - 75Ω

RFSW1012

Performance Plots Contd. - 75Ω

RFSW1012
Broadband SPDT Switch

Pin Configuration and Description

Top View

Pin No.	Label	Description
1,3	GND	No internal connection but recommend to ground on board for proper mounting integrity.
4, 6, 10, 12	GND	Internally connected and must be grounded on board.
2	RFC	Single ended Common Port
5	RF1	Single Ended RF port
7	CTRL	Switch logic control input
8	EN	Shutdown logic control input
9	VDD	Supply Voltage
11	RF2	Single ended RF port
Backside Pad	GND	Ground connection. The back side of the package should be soldered to the ground plane. PCB vias under the device are required.

RFSW1012
Broadband SPDT Switch

Package Marking and Dimensions

Trace Code to be assigned by assembly SubCon

Notes:

1. All dimensions are in mm. Angles are in degrees.
2. Dimension and tolerance formats conform to ASME Y14.4M-1994.
3. The terminal \#1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

Handling Precautions

Parameter	Rating		Standard	
ESD-Human Body Model (HBM)	Class 2	ESDA/ JEDEC JS-001-2012		
ESD-Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F		
MSL-Moisture Sensitivity Level	Level 2	IPC/JEDEC J-STD-020		

Solderability

Compatible with both lead-free ($260^{\circ} \mathrm{C}$ max. reflow temp.) and tin/lead ($245^{\circ} \mathrm{C}$ max. reflow temp.) soldering processes.
Solder profiles available upon request.
Contact plating: Matte Tin

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{O}_{2}\right)$ Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:
Tel: 1-844-890-8163
Web: www.qorvo.com

Email: customer.support@qorvo.com

For technical questions and application information: Email: appsupport@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.
Copyright 2018 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Qorvo manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A
SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405490LF BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024

