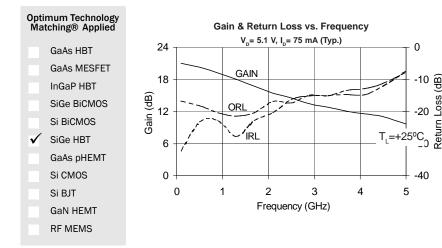
SGA6486Z

rfmd.com

DC to 4500 MHz, CASCADABLE SiGe HBT MMIC AMPLIFIER



Package: SOT-86

Product Description

The SGA6486Z is a high performance SiGe HBT MMIC Amplifier. A Darlington configuration featuring one-micron emitters provides high $F_{\rm T}$ and excellent thermal performance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Only two DC-blocking capacitors, a bias resistor, and an optional RF choke are required for operation.

Features

- High Gain: 16.4dB at 1950MHz
- Cascadable 50Ω
- Operates from Single Supply
- Low Thermal Resistance Package

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- IF Amplifier
- Wireless Data, Satellite

Parameter	Specification			Unit	Condition	
	Min.	Тур.	Max.	Unit	Condition	
Small Signal Gain	18.0	19.7	22.0	dB	850MHz	
		16.4		dB	1950MHz	
		14.8		dB	2400MHz	
Output Power at 1dB Compression		20.2		dBm	850MHz	
		18.5		dBm	1950MHz	
Output Third Intercept Point		35.0		dBm	850MHz	
		32.0		dBm	1950MHz	
Bandwidth Determined by Return Loss		4500		MHz	>10dB	
Input Return Loss		21.4		dB	1950MHz	
Output Return Loss		18.0		dB	1950MHz	
Noise Figure		3.3		dB	1950MHz	
Device Operating Voltage	4.7	5.1	5.5	V		
Device Operating Current	67	75	83	mA		
Thermal Resistance (Junction - Lead)		97		°C/W		

Test Conditions: $V_S = 8V$, $I_D = 75$ mA Typ., OIP₃ Tone Spacing = 1 MHz, P_{OUT} per tone = 0 dBm, $R_{BIAS} = 39\Omega$, $T_L = 25$ °C, $Z_S = Z_L = 50\Omega$

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity¹⁰, PowerStar®, POLARIS¹⁰ TOTAL RADIO¹⁰ and UttimateBlue¹⁰ are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade manes, trademarks and redistered trademarks are the nonnerty of their resoneritive numbers. ©2019 RFMInvir Devices Inc.

SGA6486Z

Absolute Maximum Ratings

Parameter	Rating	Unit			
Max Device Current (I _D)	150	mA			
Max Device Voltage (V _D)	7	V			
Max RF Input Power	+18	dBm			
Max Junction Temp (T _J)	+150	°C			
Operating Temp Range (T _L)	-40 to +85	°C			
Max Storage Temp	+150	°C			

Operation of this device beyond any one of these limits may cause permanent dam-age. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression:

 $I_D V_D < (T_J - T_L) / R_{TH}$, j-l

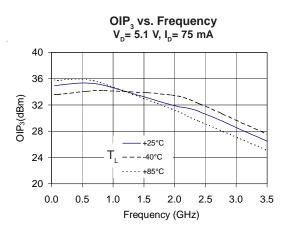
Typical Performance at Key Operating Frequencies

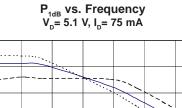
Caution! ESD sensitive device.

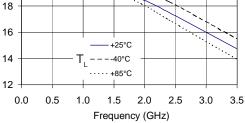
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

RoHS status based on EUDirective2002/95/EC (at time of this document revision).

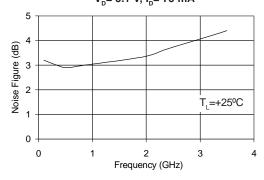
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

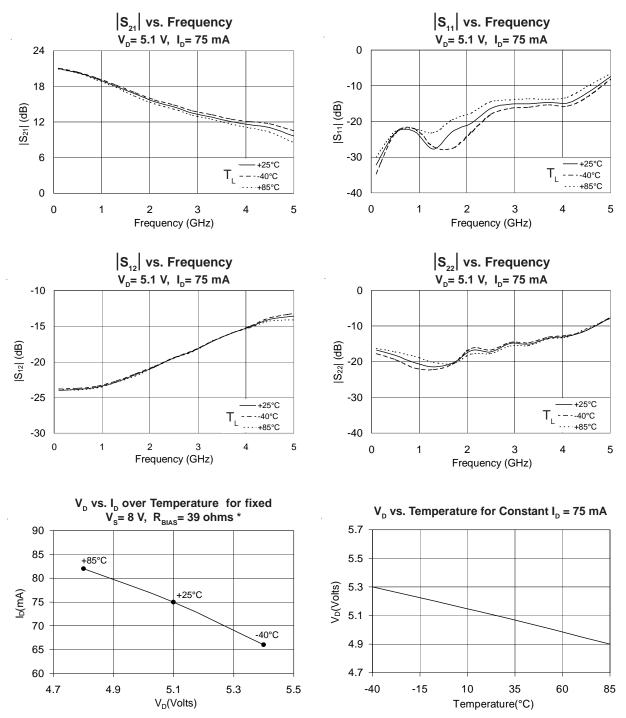

Parameter	Unit	100	500	850	1950	2400	3500
		MHz	MHz	MHz	MHz	MHz	MHz
Small Signal Gain	dB	21.0	20.3	19.7	16.4	14.8	12.3
Output Third Order Intercept Point	dBm	35.0	35.3	35.0	32.0	31.0	26.5
Output Power at 1dB Compression	dBm	20.2	20.3	20.2	18.5	17.5	14.7
Input Return Loss	dB	32.2	23.3	22.8	21.4	17.4	14.4
Output Return Loss	dB	16.8	18.2	23.0	18.0	17.4	14.2
Reverse Isolation	dB	24.0	23.9	23.6	21.2	19.7	16.6
Noise Figure	dB	3.2	2.9	3.0	3.3	3.7	4.4


22

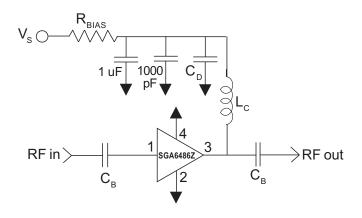

20

P_{1dB}(dBm)


Test Conditions: $V_S = 8V$, $I_D = 75$ mA Typ., OIP₃ Tone Spacing = 1MHz, P_{OUT} per tone = 0dBm, $R_{BIAS} = 39\Omega$, $T_L = 25$ °C, $Z_S = Z_L = 50\Omega$



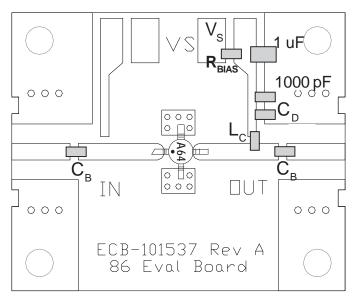
Noise Figure vs. Frequency $V_{p} = 5.1 \text{ V}, I_{p} = 75 \text{ mA}$


* Note: In the applications circuit on page 4, R_{BIAS} compensates for voltage and current variation over temperature.

SGA6486Z

RFMD (IN)

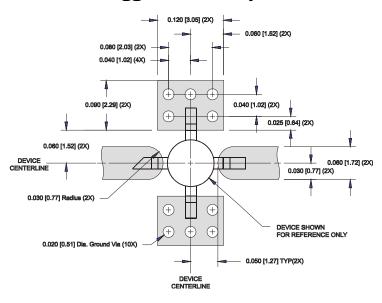
Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC-blocking capacitor chosen for the frequency of operation.
2, 4	GND	Connection to ground. For optimum RF performance, use via holes as close to ground leads as possible to reduce lead inductance.
3	RF OUT/BIAS	RF output and bias pin. DC voltage is present on this pin, therefor a DC-blocking capacitor is necessary for proper opera- tion.


Application Schematic

Reference	Frequency (Mhz)							
Designator	500	850	1950	2400	3500			
C _B	220 pF	100 pF	68 pF	56 pF	39 pF			
C _D	100 pF	68 pF	22 pF	22 pF	15 pF			
L _c	68 nH	33 nH	22 nH	18 nH	15 nH			

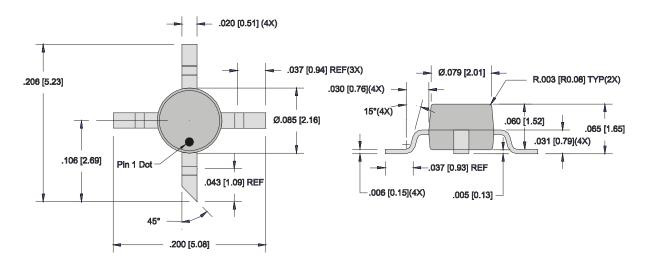
Recommended Bias Resistor Values for I_p =75mA R _{BIAS} =(V _s -V _p) / I _p				
Supply Voltage(V _S)	6 V	8 V	10 V	12 V
R _{BIAS}	13 Ω	39 N	62 Ω	91 Ω
Note: $R_{\mbox{\tiny BMS}}$ provides DC bias stability over temperature.				

Evaluation Board Layout

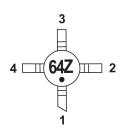


Mounting Instructions

- 1. Use a large ground pad area under device pins 2 and 4 with many plated through-holes as shown.
- 2. We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.



Suggested Pad Layout


Package Drawing

Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.

Part Identification

Ordering Information

Ordering Code	Description
SGA6486Z	13" Reel with 3000 pieces
SGA6486ZSQ	Sample bag with 25 pieces
SGA6486ZSR	7" Reel with 100 pieces
SGA6486ZPCK1	850MHz, 8V Operation PCBA with 5-piece sample bag

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310