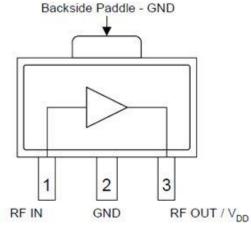


Product Overview

The TAT7460 is a GaAs pHEMT single ended RF amplifier IC featuring 16.5dB of flat gain. This IC is design to support CATV application from 50 to 2600MHz using a single 5V supply. The TAT7460 is offered in a SOT-89 package for convenient layout and design in set top and infrastructure projects for 75 Ω CATV and satellite applications.



SOT-89 Package

Key Features

- 50-2600 MHz bandwidth
- 2.4 dB Noise Figure <1600 MHz
- Extremely Flat Gain Response
- Low Power Consumption: 100 mA at 5 V

Applications

- CATV Distribution Amplifiers
- Multi-Dwelling Units
- Drop Amplifiers
- Single-ended Gain Blocks
- FTTH Receivers

Ordering Information

Part Number	Ordering Info	Description
TAT7460 Sample	1074914	75Ω pHEMT Amplifier
TAT7460	1074911	1,000 pieces on 7" Reel
TAT7460 EVB	1074915	50-2600 MHz Evaluation Board

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−65 to +150 °C
Device Voltage (V _D)	+10.0 V

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

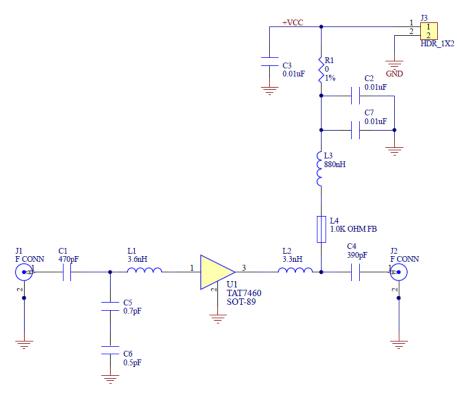
Recommended Operating Conditions

Parameter		Тур	Max	Unit
Device Voltage (V _{DD})	4.5	5.0	6.5	V
Device Current (IDD)		100	120	mA
Case Temperature	0		+85	°C
Tj for >10 ⁶ hours MTTF			+150	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Parameter	Conditions ⁽¹⁾	Min	Typical	Max	Units
Operational Frequency Range		50		2600	MHz
Gain		16.1	16.5		dB
Gain Flatness			+/- 0.5		dB
Input Return Loss			18		dB
Output Return Loss			18		dB
CSO			-61		dBc
СТВ	─ 30 dBmV / channel at output ─ 80 channels flat		-72		dBc
XMOD			-71		dBc
Output IP2	Pout = +5 dBm/tone	+56.2	+58		dBm
Output IP3	∆f = 6 MHz, 325MHz	+31.1	+36		dBm
Output P1dB			+20.5		dBm
Noise Figure	50–1600 MHz		2.5		dB
Device Current (I _{DD})			100	120	mA
Thermal Resistance, θ_{jc}	Junction to case		51		°C/W

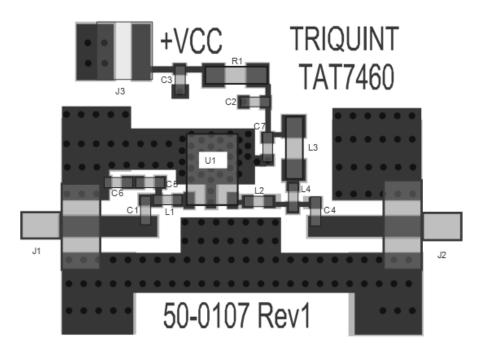

Notes:

1. Test conditions unless otherwise noted: $V_{DD} = +5.0 \text{ V}$, Temp = +25 °C, Freq = 50 – 2600 MHz

QOCVO

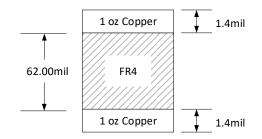
TAT7460 75Ω CATV 16.5dB Gain 50-2600MHz Amplifier

Evaluation Board Schematic, 50-2600MHz



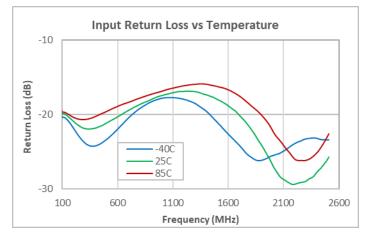
Reference Designator	Description	Manufacturer	Part Number
U1	75 Ω pHEMT Amplifier	Qorvo	TAT7460
PCB	50-2600MHz Evaluation Board	TTM	50-0107
C1	CAP, 470pF, 5%, 25V, C0G, 0603	Kemet	C0603C471J3GACTU
C2, C3, C7	CAP, 0.01uF, 10%, 50V, X7R, 0603, LF	Murata	GRM188R71H103KA01D
C4	CAP, 390pF, 5%, 25V, C0G, 0603	Kemet	C0603C391J3GACTU
C5	CAP, 0.7PF, +/-0.05pF, 50V, 0603	AVX	06035J0R7ABSTR
C6	CAP 0.5pF ±0.1PF 250V 0603	Murata	GQM1875C2ER50BB12D
L1	IND, 0603, 3.6NH, 5%	Coilcraft, Inc	0603CS-3N6XJL
L2	IND, 0603, 3.3NH, 5%	Coilcraft, Inc	0603CS-3N3X_L_
L3	IND, 1206, 880NH, +-5%	Gowanda	LQH31HNR88J03
L4	Ferrite Bead, 0402, 200mA, 1.0 k Ω	Murata	BLM15AG102SN1
R1	RES, 0 OHM, 1206	Kamaya	RMC1/8JPTP
J1, J2	CONN. 75 OHM, EDGE LAUNCH F	Lighthorse Technologies	LTI-FSF55NT-P
J3	CONN, HDR, RT ANG, 2 PIN, 0.100", T/H	Molex	022-28-8021

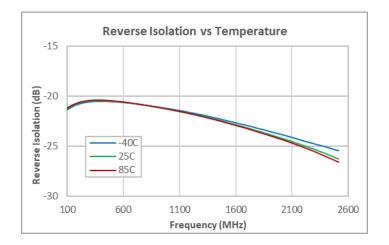
QOrvo

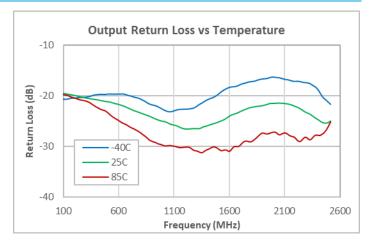

TAT7460 75Ω CATV 16.5dB Gain 50-2600MHz Amplifier

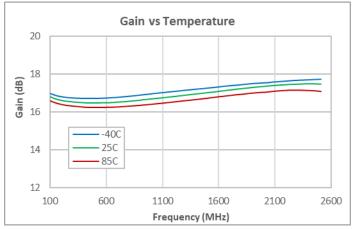
Evaluation Board Layout (50 – 2600 MHz)

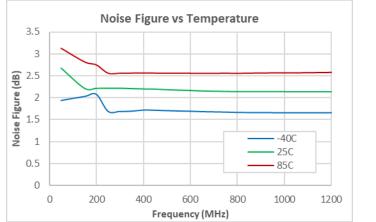
EVB PCB Material and Stack-up

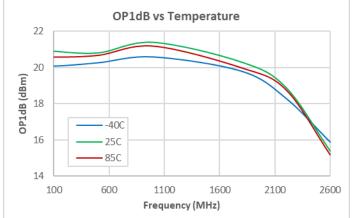

Board Material: 0.062" FR4, ϵ_r =4.2 Plating: 1oz Copper

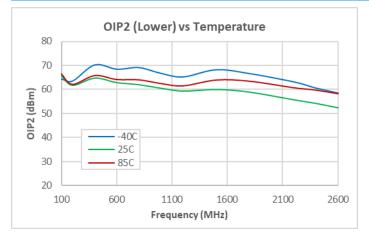


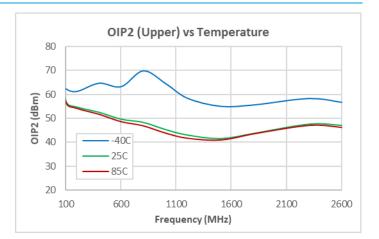

QOCVO

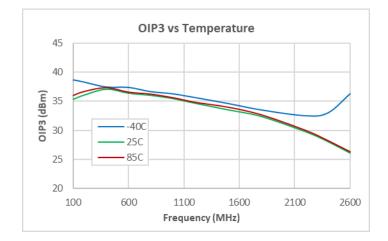

TAT7460 75Ω CATV 16.5dB Gain 50-2600MHz Amplifier

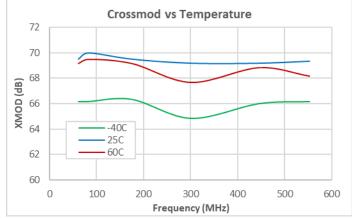

Performance Plots

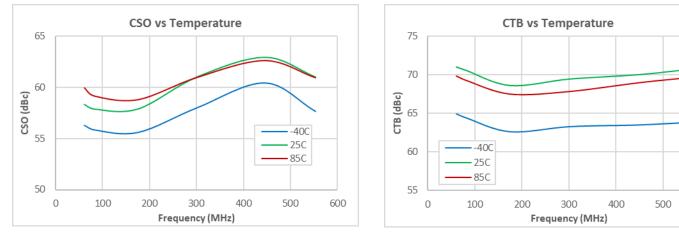





Test conditions unless otherwise noted: V_DD = +5 V, I_DD = 100 mA, Temp = +25 $^\circ\text{C}$


QOCVO


TAT7460 75Ω CATV 16.5dB Gain 50-2600MHz Amplifier


Performance Plots

Notes:

- 1. Test conditions unless otherwise noted: V_{DD} = +5 V, I_{DD} = 100 mA, Temp = +25°C
- 2. OIP2/OIP3: 5dBm/tone, 6MHz spacing
- 3. CSO/CTB/XMOD: 80 Channels NTSC, Flat Tilt, 30dBmV/Ch Output

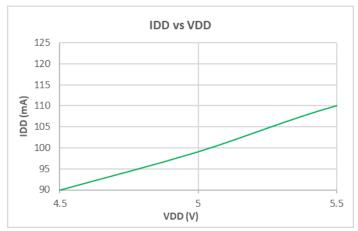
600

QOULO

20

18

16


14

100

Gain (dB)

TAT7460 75Ω CATV 16.5dB Gain 50-2600MHz Amplifier

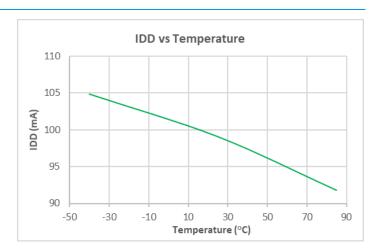
Performance Plots

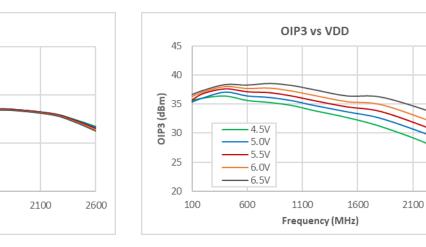
Gain vs VDD

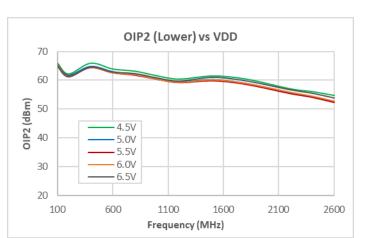
1100

Frequency (MHz)

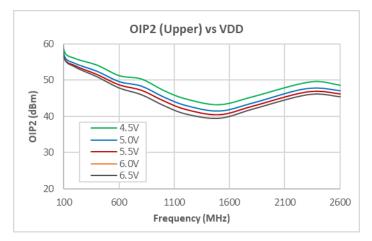
4.5


5.0V


5.5V


6.0V

6.5V

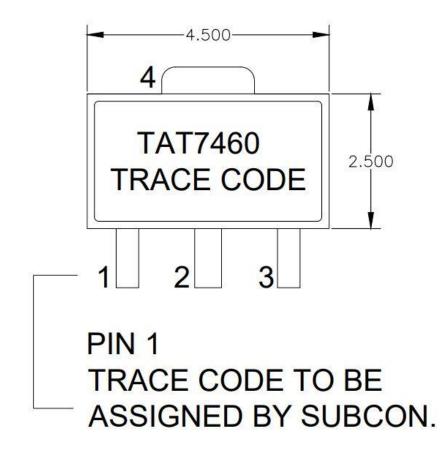

600

1600

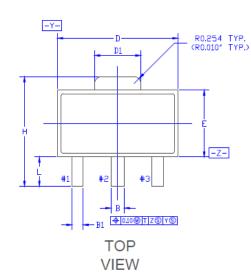
Notes:

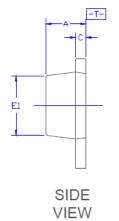
- 1. Test conditions unless otherwise noted: V_{DD} = +5 V, I_{DD} = 100 mA, Temp = +25°C
- 2. OIP2/OIP3: 5dBm/tone, 6MHz spacing

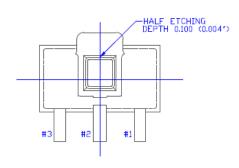
2600

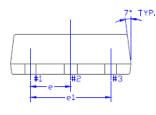

Pin Configuration and Description

Pin Number	Label	Description
1	RF IN	RF input pin. DC blocking capacitor required.
2	GND	Ground connection.
3	RF OUT	RF output and bias pin. VDD bias choke required.
Backside Paddle	GND	Ground. Use recommended via pattern to minimize inductance and thermal resistance. See PCB Mounting Pattern for suggested footprint.

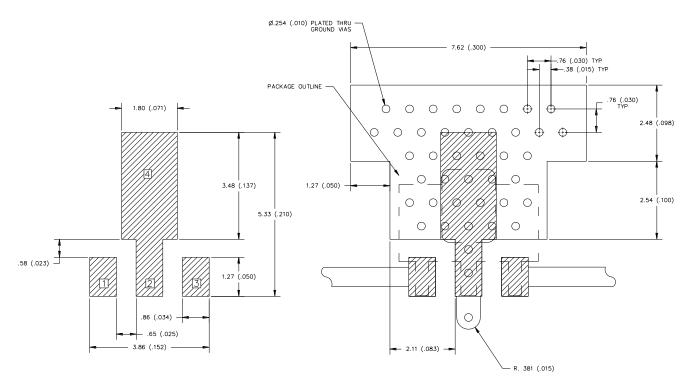



Package Marking




Package Outline

BOTTOM VIEW



SIDE VIEW

SY	Common						
Ы	DIMENSIONS MILLIMETER			DIMENSIONS INCH			
0 L	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	1.40	1.50	1.60	0.055	0.059	0.063	
В	0.44	0.50	0.56	0.017	0.020	0.022	
B1	0.36	0.42	0.48	0.014	0.017	0.019	
С	0.35	0.40	0.44	0.014	0.016	0.017	
D	4.40	4.50	4.60	0.173	0.177	0.181	
D1	1.62	1.73	1.83	0.064	0.068	0.072	
Ε	2.30	2.50	2.60	0.091	0.098	0.102	
E1	2.13	2.20	2.29	0.084	0.087	0.090	
е	1.50 BSC.			0.059 BSC.			
e1	3.00 BSC.			0.118 BSC.			
Н	3.95	4.10	4.25	0.156	0.161	0.167	
L	0.90	1.10	1.20	0.035	0.043	0.047	

PCB Mounting Pattern

Notes:

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35 mm (#80/.0135") diameter drill and have a final, plated thru diameter of .25 mm (.010").
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. RF trace width depends upon the PC board material and construction.

QONOD

TAT7460 75Ω CATV 16.5dB Gain 50-2600MHz Amplifier

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 1C (2000V)	ESDA/JEDEC JS-001-2012	Caution!
ESD-Charged Device Model (CDM)	Class C3 (>1000V)	JEDEC JESD22-C101F	ESD-Sensitive Device
MSL-Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	

Solderability

Compatible with both lead-free (260 °C max. reflow temp.) soldering process. Solder profiles available upon request.

Contact plating: NiPdAu

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Tel: 1-844-890-8163

Web: www.qorvo.com

Email: customer.support@qorvo.com

Important Notice

The information contained in this Data Sheet and any associated documents ("Data Sheet Information") is believed to be reliable; however, Qorvo makes no warranties regarding the Data Sheet Information and assumes no responsibility or liability whatsoever for the use of said information. All Data Sheet Information is subject to change without notice. Customers should obtain and verify the latest relevant Data Sheet Information before placing orders for Qorvo® products. Data Sheet Information or the use thereof does not grant, explicitly, implicitly or otherwise any rights or licenses to any third party with respect to patents or any other intellectual property whether with regard to such Data Sheet Information itself or anything described by such information.

DATA SHEET INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo® products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Applications described in the Data Sheet Information are for illustrative purposes only. Customers are responsible for validating that a particular product described in the Data Sheet Information is suitable for use in a particular application.

© 2021 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc. | QORVO® is a registered trademark of Qorvo US, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 A81-2 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V