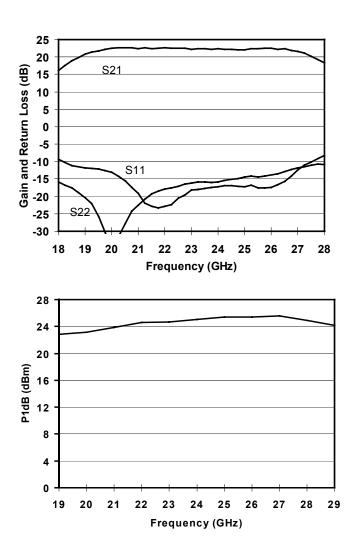

19 - 27 GHz Medium Power Amplifier

The TriQuint TGA1073G-SCC is a three stage MPA MMIC design using TriQuint's proven 0.25 um Power pHEMT process. The TGA1073G is designed to support a variety of millimeter wave applications including point-to-point digital radio and point-to-multipoint communications.

The three stage design consists of a 200 um input device driving a 480um interstage device followed by an 800um output device.

The TGA1073G provides 25dBm nominal output power at 1dB compression across 19-27GHz. Typical small signal gain is 22 dB.


The TGA91073G requires minimum off-chip components. Each device is 100% DC and RF tested on-wafer to ensure performance compliance. The device is available in chip form.

Key Features and Performance

- 0.25 um pHEMT Technology
- 22 dB Nominal Gain
- 25 dBm Nominal Pout @ P1dB
- Bias 5-7V @ 220 mA
- Chip Dimensions 2.55 mm x 1.15mm

Primary Applications

- Point-to-Point Radio
- Point-to-Multipoint Communications

Product Datasheet

August 15, 2000

MAXIMUM RATINGS

SYMBOL	PARAMETER <u>5</u> /	VALUE	NOTES
V^+	POSITIVE SUPPLY VOLTAGE	8 V	
I^+	POSSITIVE SUPPLY CURRENT	296 mA	<u>1</u> /
P _{IN}	INPUT CONTINUOUS WAVE POWER	23 dBm	<u>4</u> /
P _D	POWER DISSIPATION	2.37 W	
T _{CH}	OPERATING CHANNEL TEMPERATURE	150 °C	<u>2/3/</u>
T _M	MOUNTING TEMPERATURE (30 SECONDS)	320 °C	
T _{STG}	STORAGE TEMPERATURE	-65 to 150 °C	

 $\underline{1}$ Total current for all stages.

 $\underline{2}$ / These ratings apply to each individual FET.

- $\underline{3}$ / Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- $\underline{4}$ This value reflects an estimate. Actual value will be inserted as soon as it is determined.
- 5/ These ratings represent the maximum operable values for the device.

NOTES	SYMBOL	TEST CONDITIONS <u>2</u> /	LIMITS		UNITS
			MIN	MAX	
	I _{DSS3}	STD	80	376	mA
	G _{M3}	STD	176	424	mS
<u>1</u> /	$ V_{P1} $	STD	0.5	1.5	V
<u>1</u> /	V _{P2}	STD	0.5	1.5	V
<u>1</u> /	V _{P3}	STD	0.5	1.5	V
<u>1</u> /	V _{BVGD1}	STD	11	30	V
<u>1</u> /	V _{BVGS1}	STD	11	30	V

DC SPECIFICATIONS (100%) ($T_A = 25 \text{ °C} \pm 5 \text{ °C}$)

- $\underline{1}$ V_P, V_{BVGD}, and V_{BVGS} are negative.
- $\underline{2}$ / The measurement conditions are subject to change at the manufacture's discretion (with appropriate notification to the buyer).

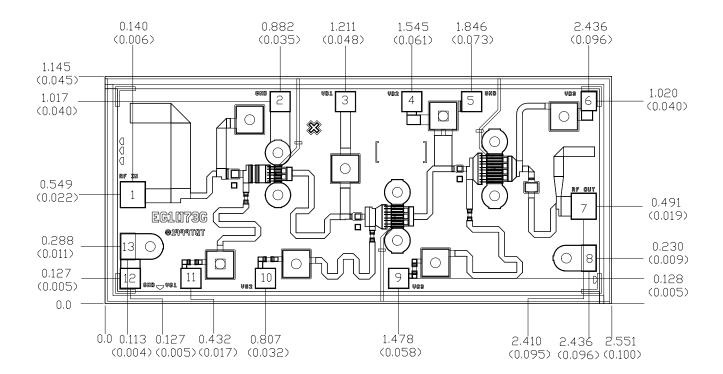
August 15, 2000

RF SPECIFICATIONS

 $(T_A = 25^{\circ}C + 5^{\circ}C)$

NOTE	TEST	MEASUREMENT CONDITIONS		VALUE		
		6V @ 220mA	MIN	ТҮР	MAX	
<u>1</u> /	SMALL-SIGNAL	19 GHz	16	20		dB
	GAIN MAGNITUDE	20 – 25 GHz	19	23		dB
	POWER OUTPUT	20 GHz	21	23		dBm
	AT 1 dB GAIN COMPRESSION	22 GHz	24	25		dBm
	COMI RESSION	23.5 GHz	24	26		dBm
<u>1</u> /	INPUT RETURN LOSS MAGNITUDE	19 – 25 GHz		-20		dB
<u>1</u> /	OUTPUT RETURN LOSS MAGNITUDE	19 – 25 GHz		-15		dB
<u>2</u> /	OUTPUT THIRD ORDER INTERCEPT			32		dBm

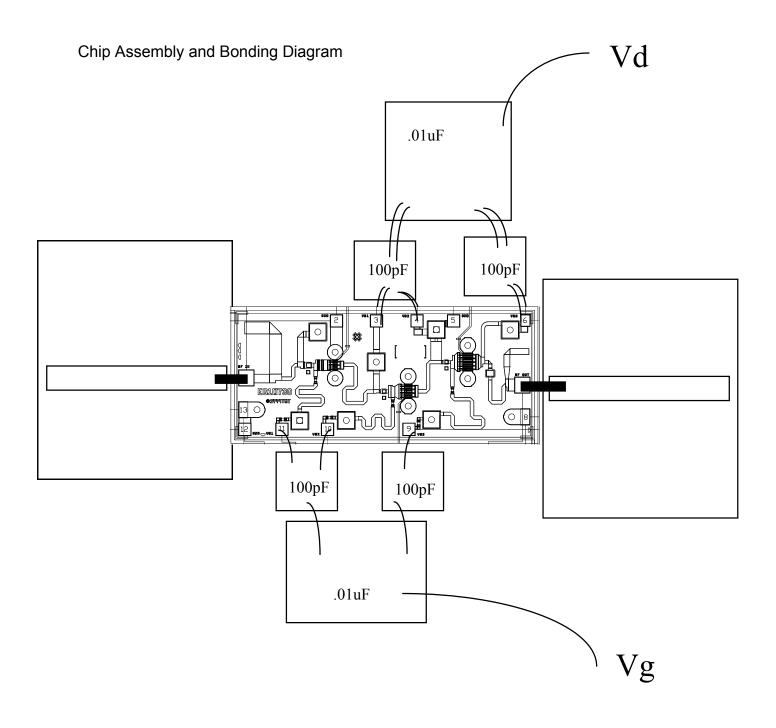
 $\underline{1}$ / RF probe data is taken at 1 GHz steps.


RELIABILITY DATA

PARAMETER	BIAS CONDITIONS		P _{DISS}	$R_{\theta JC}$	T _{CH}	T _M
	$V_{D}(V)$	$I_{D}(mA)$	(W)	(C/W)	(°C)	(HRS)
R _{θJC}	6	220	1.32	71.7	149.6	1.0 E6
Thermal resistance						
(channel to backside of						
c/p)						

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20mil CuMo Carrier at 55°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

Mechanical Characteristics


Units: millimeters (inches) Thickness: 0.1016 (0.004) Chip edge to bond pad dimensions are shown to center of bond pad Chip size tolerance: +/- 0.051 (0.002)

Bond Pad #1 (RF Input) Bond Pad #2 (GND) Bond Pad #3 (VD1) Bond Pad #4 (VD2) Bond Pad #5 (GND) Biond Pad #6 (VD3) Bond Pad #7 (RF Dutput) Bond Pad #8 (GND) Bond Pad #9 (VG3) Bond Pad #10 (VG2) Bond Pad #11 (VG1) Bond Pad #12 (GND) Bond Pad #13 (GND)

0.130	\times	0.135	(0.005	\times	0.005>
0.105	×	0,105	(0,004	\times	0,004)
0,105	\times	0,105	(0,004	\times	0,004)
0.105	\times	0,105	(0,004	\times	0,004)
0.105	×	0,105	(0,004	×	0.004)
0.081	×	0,100	(0.003	×	0.004)
0,130	\times	0.135	(0.005	\times	0.005)
0.078	\times	0,136	(0,003	\times	0,005)
0,105	\times	0,105	(0,004	\times	0,004)
0.105	\times	0,105	(0,004	\times	0,004)
0.105	\times	0,105	(0,004	\times	0,004)
0.105	\times	0,105	(0,004	\times	0,004)
0.105	\times	0.105	<0.004	\times	0.004>

Product Datasheet August 15, 2000

Product Datasheet August 15, 2000

Reflow process assembly notes:

- AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C
- alloy station or conveyor furnace with reducing atmosphere
- no fluxes should be utilized
- coefficient of thermal expansion matching is critical for long-term reliability
- storage in dry nitrogen atmosphere

Component placement and adhesive attachment assembly notes:

- vacuum pencils and/or vacuum collets preferred method of pick up
- avoidance of air bridges during placement
- force impact critical during auto placement
- organic attachment can be used in low-power applications
- curing should be done in a convection oven; proper exhaust is a safety concern
- microwave or radiant curing should not be used because of differential heating
- coefficient of thermal expansion matching is critical

Interconnect process assembly notes:

- thermosonic ball bonding is the preferred interconnect technique
- force, time, and ultrasonics are critical parameters
- aluminum wire should not be used
- discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire
- maximum stage temperature: 200°C

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310