

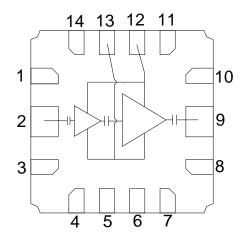
Applications

- · Commercial and Military Radar
- Communications

Product Features

• Frequency Range: 16 – 18GHz

P_{SAT}: 18.5dBmP1dB: 16.5dBm


Small Signal Gain: 20dBInput Return Loss: 16dBOutput Return Loss: 25dB

• Bias: $V_D = 6V$, $I_{DQ} = 30$ mA, $V_G = -0.6V$ Typical

• Package Dimensions: 3 x 3 x 0.53 mm

OFN 3x3 mm 14L

Functional Block Diagram

General Description

TriQuint's TGA2620-SM is a package Ku-band MMIC driver amplifier fabricated on TriQuint's 0.15um GaAs pHEMT production process. Operating from 16-18GHz, the TGA2620-SM provides more than 18.5dBm saturated output power, 16.5dBm P1dB and 20dB small signal gain.

Fully matched to 50 ohms with integrated DC blocking capacitors on both I/O ports allows for simple system integration. The TGA2620-SM is an ideal choice for general purpose amplification across both commercial and military Ku-band platforms.

The TGA2620-SM is available in a low cost, surface mount, 14-lead 3x3mm AIN QFN package base with air cavity Liquid Crystal Polymer (LCP) lid.

Lead-free and RoHS compliant

Evaluation Boards are available upon request.

Pad Configuration

Pad No.	Symbol
1, 3, 8, 10	GND
2	RF In
4 - 7, 11, 14	N/C
9	RF Out
12	V _D
13	V _G

Ordering Information

Part	ECCN	Description
TGA2620-SM	EAR99	16 – 18GHz Driver Amplifier

Preliminary Datasheet: Rev - 07-25-14 © **2014 TriQuint**

Absolute Maximum Ratings

Parameter	Value
Drain Voltage (V _D)	6.5V
Gate Voltage Range (V _G)	-2 to 0V
Drain Current (I _D)	65mA
Gate Current (I _G)	-0.5 to 5mA
Power Dissipation, 85°C (P _{DISS})	0.3W
Input Power, CW, 50 Ω, (P _{IN})	15dBm
Channel temperature (T _{CH})	150°C
Mounting Temperature (30 Seconds)	260°C
Storage Temperature	-55 to 150°C

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

Recommended Operating Conditions

Parameter	Value
Drain Voltage (V _D)	6V
Drain Current (I _{DQ})	30mA
Gate Voltage (V _G)	-0.6V Typical

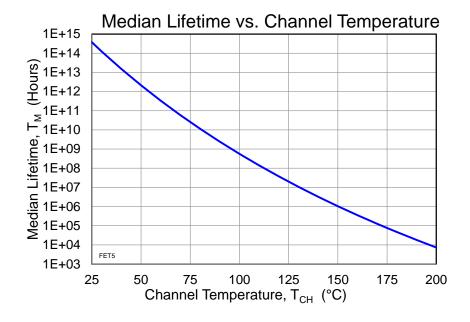
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed overall operating conditions.

Electrical Specifications

Test conditions unless otherwise noted: 25°C, V_D = 6V, I_{DQ} = 30mA, V_G = -0.6V Typical

Parameter	Min	Typical	Max	Units
Operational Frequency Range	16		18	GHz
Small Signal Gain		20		dB
Input Return Loss		16		dB
Output Return Loss		25		dB
Output Power (PSAT)		18.5		dBm
Output Power at 1 dB Gain Compression		16.5		dBm
Power Added Efficiency (Psat)		24		%
Gain Temperature Coefficient		-0.02		dB/°C

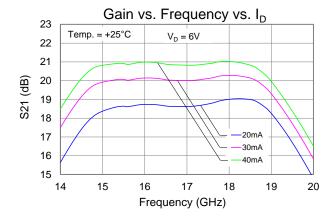
16 - 18GHz Driver Amplifier

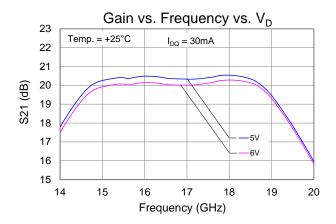

Thermal and Reliability Information

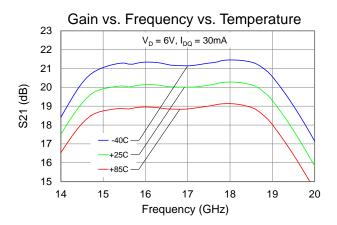
Parameter	Test Conditions	Value	Units
Thermal Resistance (θ _{JC}) ⁽¹⁾	$T_{\text{base}} = 85^{\circ}\text{C}$	226	°C/W
	$V_D = 6V$, $I_{DQ} = 30mA$, $I_{D_Drive} = 53mA$, CW	142	°C
Median Lifetime (T _M)	$P_{IN} = 5dBm, P_{OUT} = 18.3dBm, P_{DISS} = 250mW$	2.6 x 10^6	Hrs

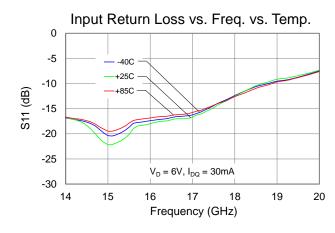
Notes:

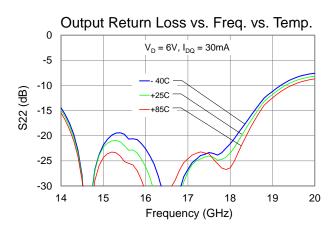
Median Lifetime

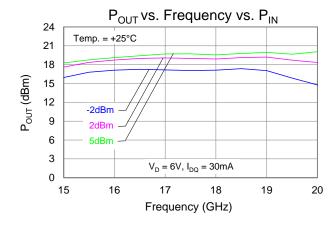

Test Conditions: VD = 6.5V; Failure Criteria = 10% reduction in ID_MAX

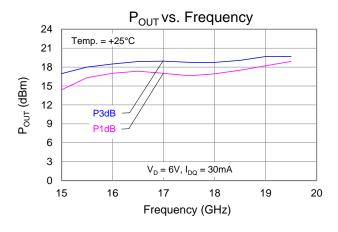


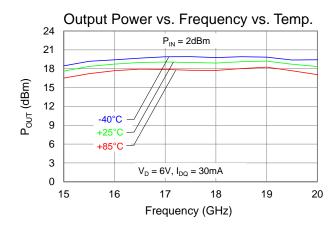

^{1.} Thermal resistance measured at back of the package.



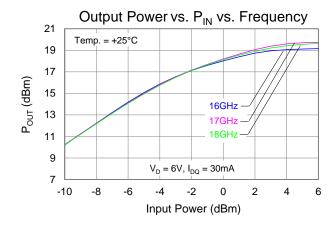

Typical Performance: Small Signal

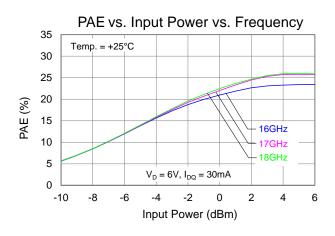


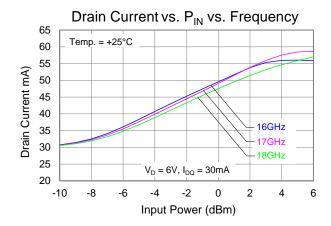


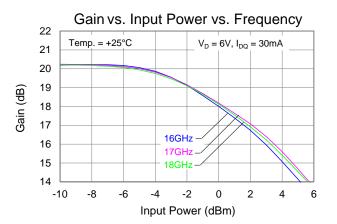


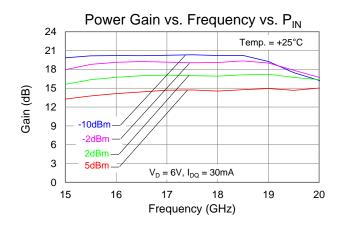



Typical Performance: Large Signal

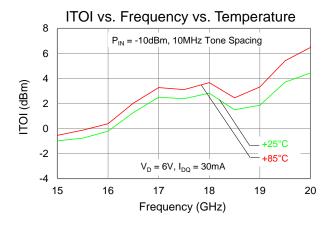


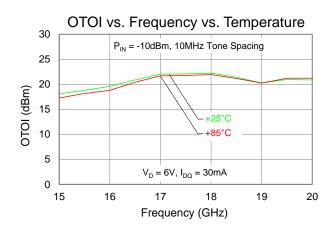


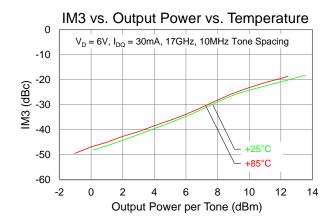


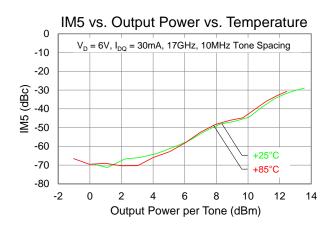


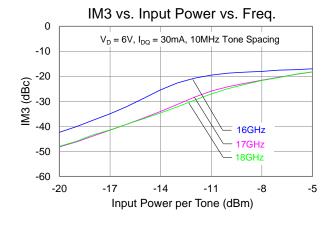
Typical Performance: Large Signal

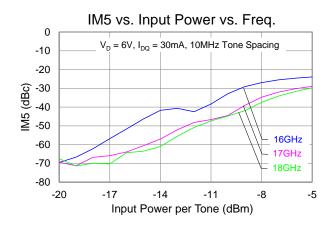


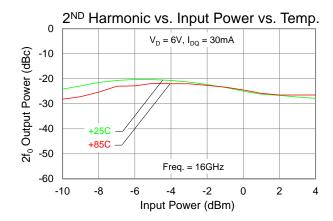


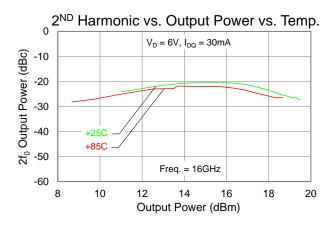


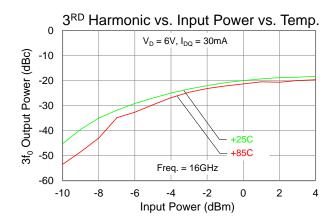


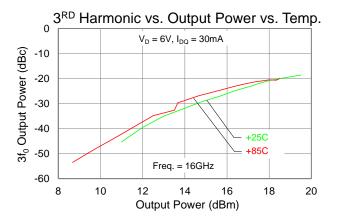

Typical Performance At Die Level (Linearity



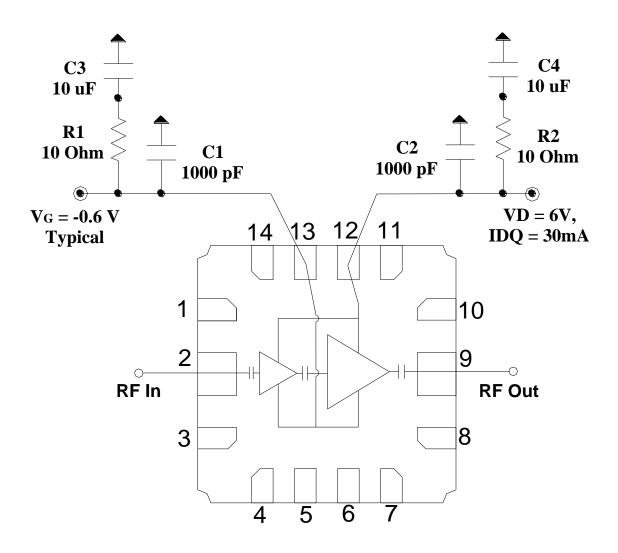






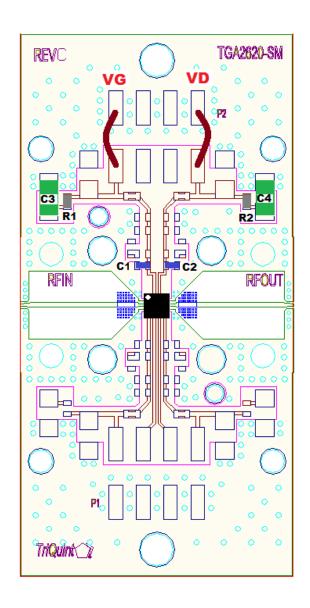

16 - 18GHz Driver Amplifier

Typical Performance At Die Level (Harmonics)



Application Circuit

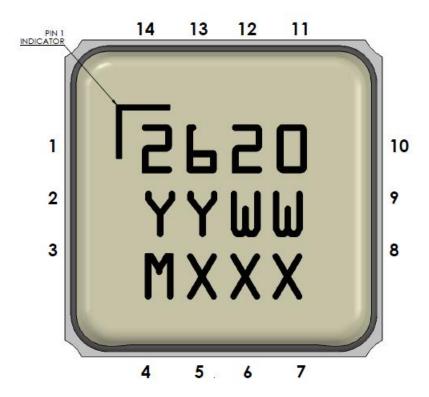
Bias-up Procedure


- 1. Set I_D limit to 60mA, I_G limit to 4mA
- 2. Set V_G to -1.5V
- 3. Set VD +6V
- 4. Adjust V_G more positive until I_{DQ} = 30mA ($V_G \sim$ -0.6V Typical)
- 5. Apply RF signal

Bias-down Procedure

- 1. Turn off RF signal
- 2. Reduce V_G to -1.5V. Ensure $I_{DQ} \sim 0 mA$
- 3. Set V_D to 0V
- 4. Turn off V_D supply
- 5. Turn off V_G supply

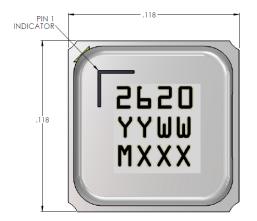
Evaluation Board

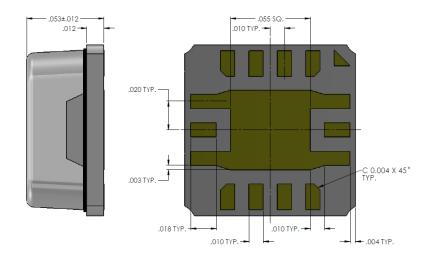


Bill of Material

Reference Des.	Value	Description	Manuf.	Part Number
C1 – C2	1000pF	Cap, 0402, 50 V, 10%, X7R	Various	
C3 – C4	10μF	Cap, 1206, 50 V, 20%, X5R	Various	
R1 – R2	10Ω	Res, 0402, 5%	Various	

Pin Layout


	_		4.0	
Pin	Dac	Cri	n ti	On
		191	IJLI	UII


	Pin No.	Symbol	Description
1, 3, 8, 10		GND	Ground
2		RF IN	Input; matched to 50 Ω. DC Blocked
4 – 7, 11, 14		NC	No Connection – Recommended grounding on PCB.
9		RF OUT	Output; matched to 50 Ω. DC Blocked
12		DRAIN	Drain voltage; bias network is required; see Application Circuit on page 9 as an example.
13		GATE	Gate voltage; bias network is required; see Application Circuit on page 9 as an example.
15		GND	Ground Paddle. Multiple vias should be employed to minimize inductance and thermal resistance.

Mechanical Information

Units: inches

Tolerances: unless specified

 $x.xxx = \pm 0.005$

Materials:

Base: Aluminum Nitride (AIN)
Lid: Liquid Crystal Polymer (LCP)

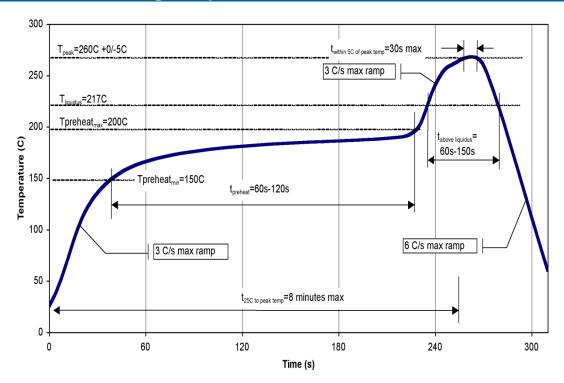
Contact Pin Plating:

Electroless Gold (Au): 0.5 – 1.5 μm

Over

Electroless Nickel (Ni): 2.0 µm min.

Marking:


2620: Part number

YY: Part Assembly year WW: Part Assembly week

MXXX: Batch ID

Recommended Soldering Temperature Profile

16 - 18GHz Driver Amplifier

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating: TBD Value: TBD

Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

MSL Rating

Level TBD at 260°C convection reflow
This part is rated Moisture Sensitivity Level TBD at TBD
°C per JEDEC standard IPC/JEDEC J-STD-020.

ECCN

US Department of Commerce: EAR99

Solderability

Compatible with the latest version of J-STD-020 Lead free solder, 260°C.

RoHS Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

 Web:
 www.triquint.com
 Tel:
 +1.972.994.8465

 Email:
 info-sales@triquint.com
 Fax:
 +1.972.994.8504

For technical questions and application information: Email: info-products@triquint.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549M88GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V A4011