TGA2625-CP 10-11 GHz 20 W GaN Power Amplifier

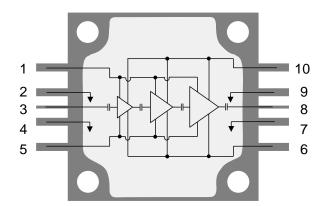
Product Description

Qorvo's TGA2625-CP is a packaged high-power X-Band amplifier fabricated on Qorvo's QGaN25 0.25 um GaN on SiC process. Operating from 10 to 11 GHz, the TGA2625-CP achieves 42.5 dBm saturated output power, a power-added efficiency of > 40 %, and power gain of 28 dB.

The TGA2625-CP is packaged in a 10-lead 15x15 mm boltdown package with a Cu base for superior thermal management. It can support a range of bias voltages and performs well under CW and pulsed conditions. Both RF ports are internally DC blocked and matched to 50 ohms allowing for simple system integration.

The TGA2625-CP is ideally suited for both commercial and defense applications.

Lead free and RoHS compliant.


Evaluation Boards are available upon request.

Product Features

- Frequency Range: 10 11 GHz
- Pout: 42.5 dBm (at P_{IN} = 15 dBm)
- PAE: > 40 %
- Power Gain: 28 dB (at P_{IN} = 15 dBm)
- Bias: V_D = 28 V, I_{DQ} = 365 mA, V_G = -2.6 V typical, pulsed (PW = 100 $\mu s,$ DC = 10 %)
- Package Dimensions: 15.2 x 15.2 x 3.5 mm
- Package base is pure Cu offering superior thermal management

Functional Block Diagram

Applications

- Radar
- Communications

Ordering Information

Part No.	Description		
TGA2625-CP	10-11 GHz 20 W GaN Power Amplifier		

TGA2625-CP 10-11 GHz 20 W GaN Power Amplifier

Absolute Maximum Ratings

Parameter	Value / Range
Drain Voltage (V _D)	40 V
Gate Voltage Range (V _G)	-8 to 0 V
Drain Current (I _D)	3 A
Gate Current (I _G)	-6 to 14 ⁽¹⁾ mA
Power Dissipation (PDISS), 85 °C	53 W
Input Power, CW, 50 Ω, (P _{IN})	21 dBm
Input Power, CW, VSWR 6:1, V _D = 28 V, 85 °C, (P _{IN})	21 dBm
Mounting Temperature (30 Seconds)	260 °C
Storage Temperature	-55 to 150 °C

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

(1) Max rating for IG is at Channel Temperature (TCH) of 200 °C.

Recommended Operating Conditions

Parameter	Value / Range
Drain Voltage (V _D) pulsed: PW = 100 μ s, DC = 10 %	28 V
Drain Current (I _{DQ})	365 mA
Drain Current Under RF Drive (I _{D_DRIVE})	See plots p. 6
Gate Voltage (V _G)	−2.6 V (Typ.)
Gate Current Under RF Drive (Ig_DRIVE)	See plots p. 6
Temperature (T _{BASE})	-40 to 85 °C

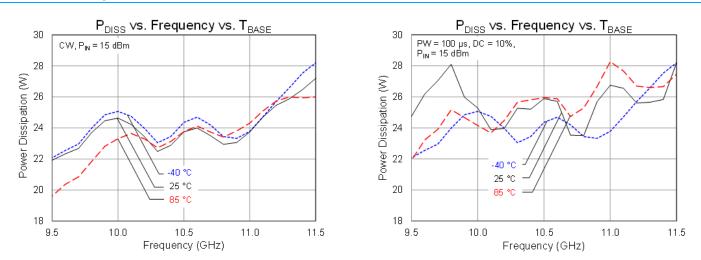
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Parameter	Min	Тур	Max	Units
Operational Frequency Range	10		11	GHz
Small Signal Gain		36		dB
Input Return Loss		13.5		dB
Output Return Loss		10		dB
Output Power (at P _{IN} = 15 dBm)		42.5		dBm
Power Added Efficiency (at P _{IN} = 15 dBm)		40		%
Power Gain (at P _{IN} = 15 dBm)		28		dB
Output Power Temperature Coefficient Pulsed (25 °C to 85 °C only) CW		-0.003 -0.01		dBm/°C
Recommended Operating Voltage	25	28	32	V

Test conditions unless otherwise noted: 25 °C, $V_D = 28$ V (PW = 100 μ s, DC = 10 %), $I_{DQ} = 365$ mA, $V_G = -2.6$ V typical.

QOrvo

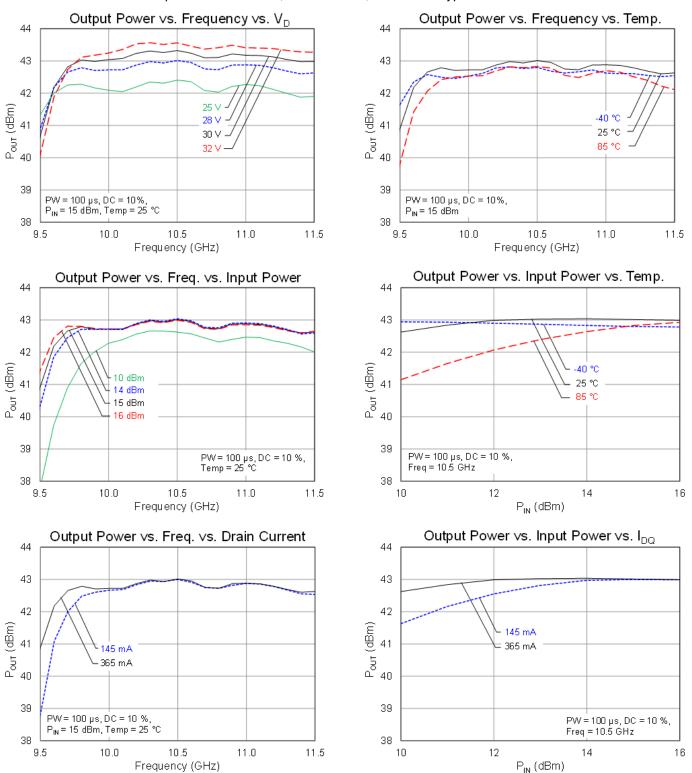

Thermal and Reliability Information

Parameter	Test Conditions	Value	Units
Thermal Resistance (θ_{JC}) ⁽¹⁾	CW, $V_D = 28 V$, $I_{DQ} = 365 mA$,	2.25	°C/W
Channel Temperature (T _{CH}) (under RF drive)	T _{BASE} = 85°C, Freq = 10.5 GHz, P _{IN} = 15 dBm, P _{OUT} = 42.4 dBm P _{DISS} =24 W, I _{D_Drive} = 1.46 A	139	°C
Thermal Resistance (θ_{JC}) ⁽¹⁾	$V_D = 28 V, I_{DQ} = 365 mA,$	1.57	°C/W
Channel Temperature (T _{CH}) (under RF drive)	$\label{eq:powerserv} \begin{array}{ c c c c c c } \hline (Pulsed: PW = 100 \ \mu s, \ DC = 10 \ \%), \\ \hline T_{BASE} = 85^{\circ}C, \ Freq = 10.5 \ GHz, \ P_{IN} = 15 \ dBm, \\ \hline P_{OUT} = 42.8 \ dBm, \ P_{DISS} = 26 \ W, \ I_{D_Drive} = 1.61 \ A \end{array}$	126	°C

Notes:

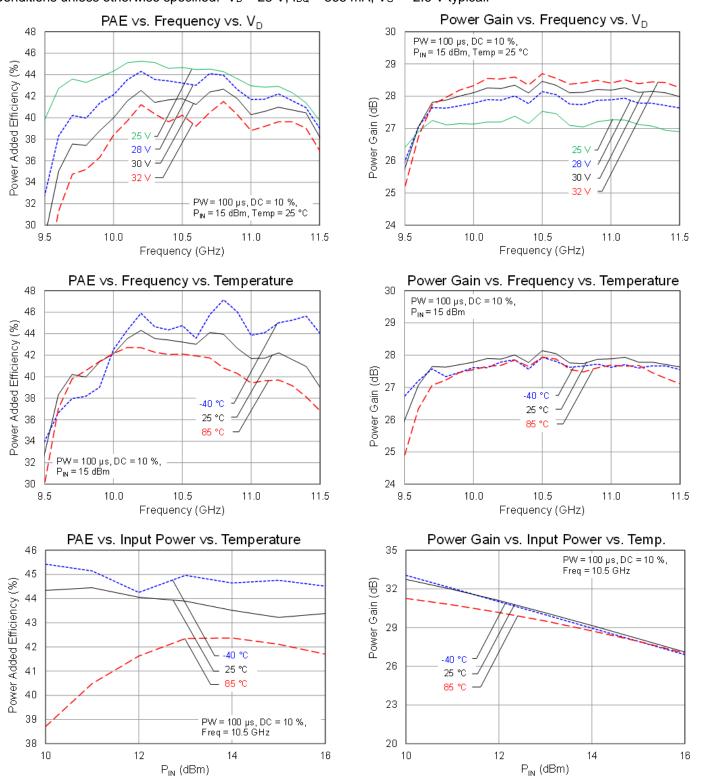
1. Thermal resistance measured to back of package.

2. Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates



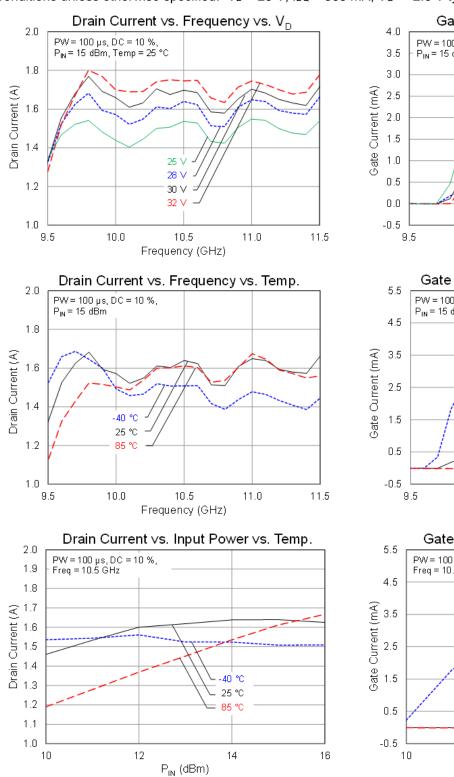
Power Dissipation

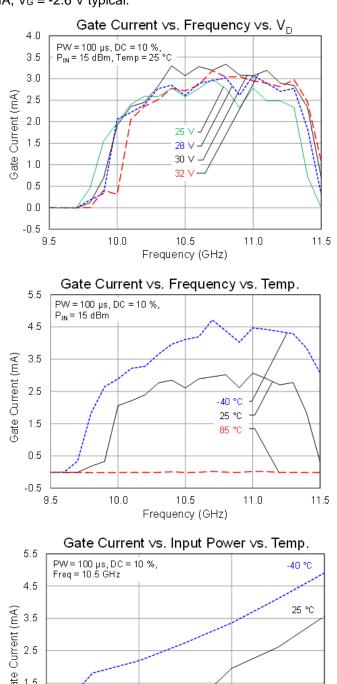
TGA2625-CP 10 – 11 GHz 20 W GaN Power Amplifier


Typical Performance – Large Signal

Conditions unless otherwise specified: V_D = 28 V, I_{DQ} = 365 mA, V_G = -2.6 V typical.

TGA2625-CP 10 – 11 GHz 20 W GaN Power Amplifier


Typical Performance – Large Signal (Pulsed)

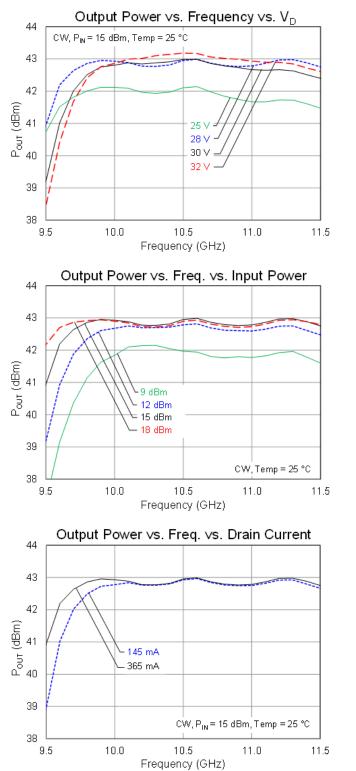


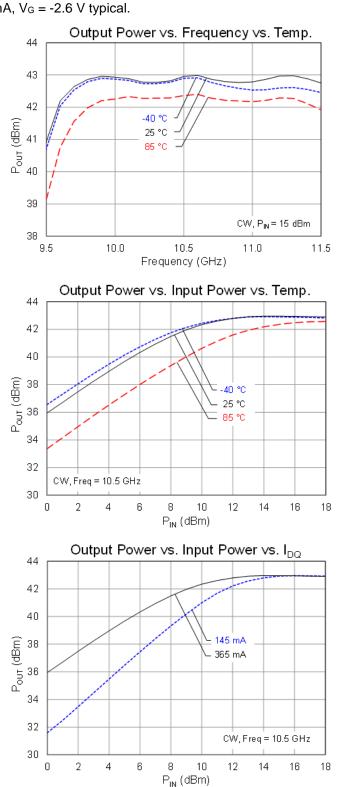
TGA2625-CP 10 – 11 GHz 20 W GaN Power Amplifier

Typical Performance – Large Signal (Pulsed)

Conditions unless otherwise specified: $V_D = 28 \text{ V}$, $I_{DQ} = 365 \text{ mA}$, $V_G = -2.6 \text{ V}$ typical.

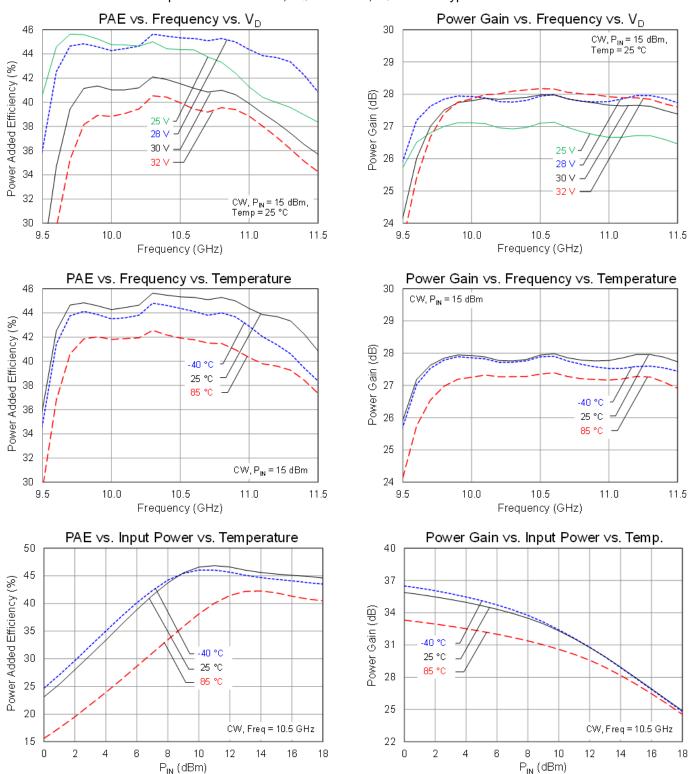
12

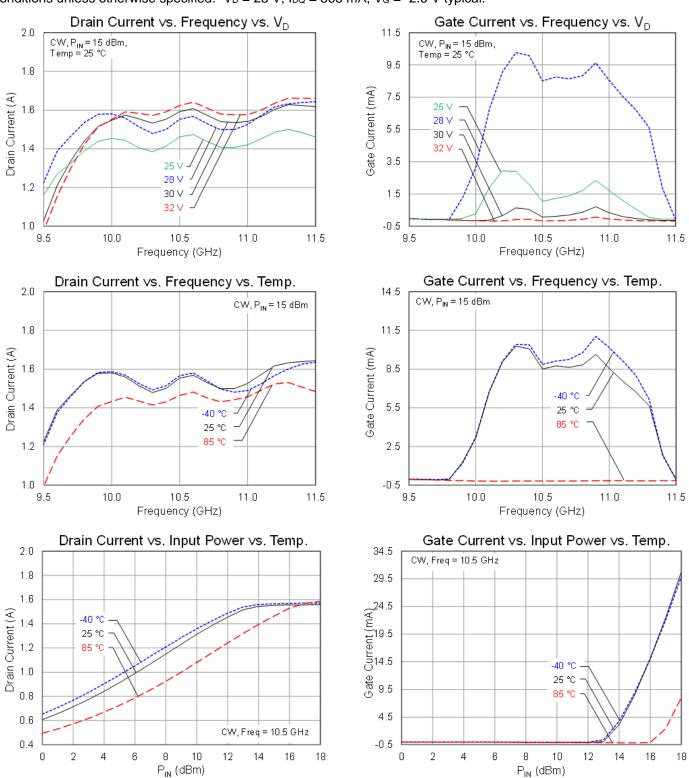

P_{IN} (dBm)


85 °C

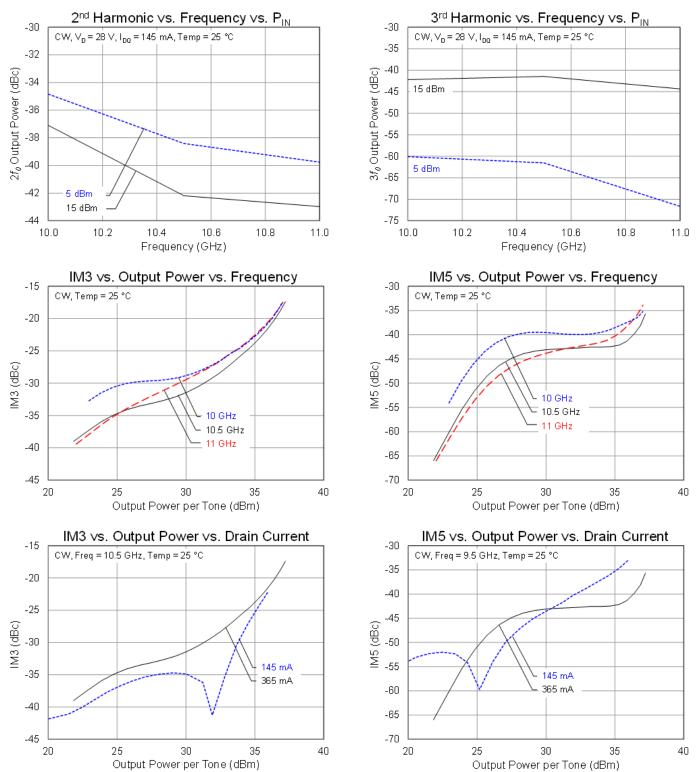
16

14

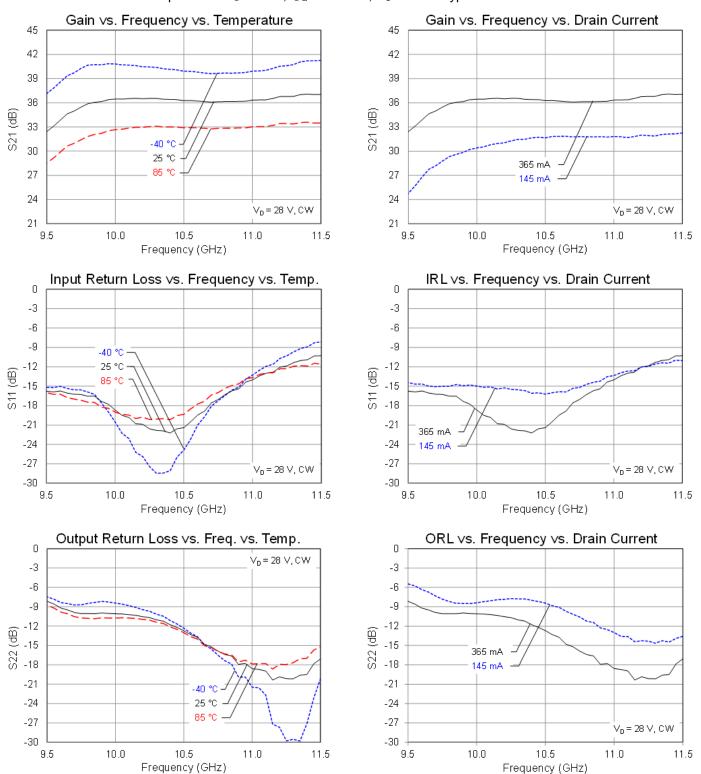

Performance Plots – Large Signal (CW)


TGA2625-CP 10 – 11 GHz 20 W GaN Power Amplifier

Performance Plots – Large Signal (CW)

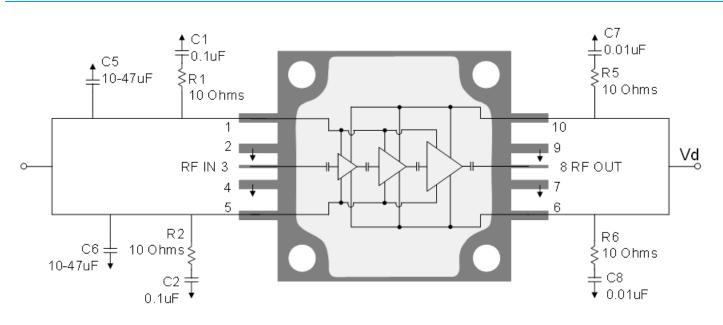

TGA2625-CP 10 – 11 GHz 20 W GaN Power Amplifier

Performance Plots – Large Signal (CW)



TGA2625-CP 10 – 11 GHz 20 W GaN Power Amplifier

Typical Performance – Linearity



Typical Performance – Small Signal

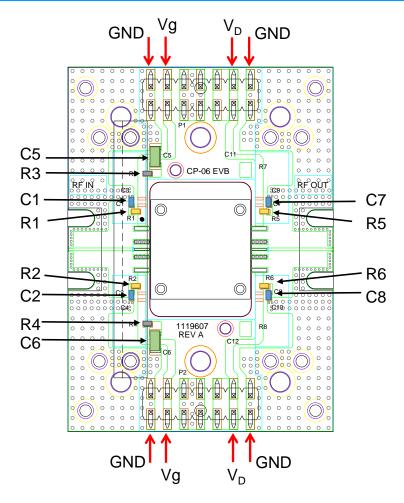
TGA2625-CP 10 – 11 GHz 20 W GaN Power Amplifier

Applications Information and Pin Layout

Bias Up Procedure

- 1. Set I_D limit to 3 A, I_G limit to 14 mA
- 2. Apply –5 V to $V_{\rm G}$
- 3. Apply +28 V to $V_{\text{D}};$ ensure I_{DQ} is approx. 0 mA
- 4. Adjust V_G until I_{DQ} = 365 mA (V_G ~ -2.6 V Typ.).
- 5. Turn on RF supply

Bias Down Procedure


- 1. Turn off RF supply
- 2. Reduce V_G to -5 V; ensure I_{DQ} is approx. 0 mA
- 3. Set V_{D} to 0 V
- 4. Turn off V_{D} supply
- 5. Turn off V_G supply

Pin Description

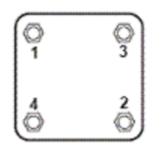
Pad No.	Symbol	Description
1, 5	V _G	Gate Voltage; Bias network is required; must be biased from both sides; see recommended Application Information above.
3	RFIN	Output; matched to 50 Ω; DC blocked
2, 4, 7, 9	GND	Must be grounded on the PCB.
6, 10	VD	Drain voltage; Bias network is required; must be biased from both sides; see recommended Application Information above.
8	RFout	Input; matched to 50 Ω ; DC blocked

TGA2625-CP 10 – 11 GHz 20 W GaN Power Amplifier

Evaluation Board (EVB)

NOTES:

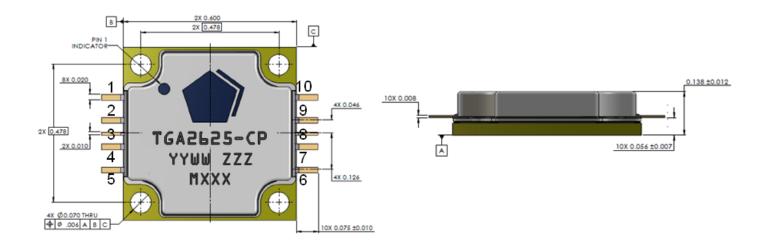
Bill of Materials


Reference Des.	Value	Description	Manuf.	Part Number
C1, C2	0.1 uF	Cap, 0402, 50 V, 10%, X7R	Various	
C5, C6	10-47 uF	Cap, 1206, 50 V, 20%, X5R (10v is OK)	Various	
C7, C8	0.01 uF	Cap, 0402, 50V, 10%, X7R	Various	
R1, R2, R5, R6	10 Ohms	Res, 0402, 50V, 5%	Various	
R3, R4	0 Ohms	Res, 0402, jumper required for the above EVB design	Various	

⁽¹⁾ Both Top and Bottom Vd and Vg must be biased.

TGA2625-CP 10 – 11 GHz 20 W GaN Power Amplifier

Assembly Notes


- 1. Carefully clean the PC board and package leads with alcohol. Allow it to dry fully.
- 2. To improve the thermal and RF performance, Qorvo recommends attaching a heat sink to the bottom of the PCB and apply thermal compound (Arctic Silver 5 recommended) or 4 mil indium shim between the heat sink and the package.
- 3. (The following is for <u>information only</u>. There are many variables in a second level assembly that Qorvo does not control, so Qorvo does not recommend an absolute torque value.) Use screws to attach the component to the heat sink. A suggested torque value is 16 in-oz. for a 0-80 screw. Start with screws finger tight, then torque to 8 in-oz., then torque to final value. Use the following tightening pattern:

 Apply no-flux solder to each pin of the TGA2625-CP. The component leads should be manually soldered, and the package cannot be subjected to conventional reflow processes. The use of no-clean solder to avoid washing after soldering is recommended.

TGA2625-CP 10-11 GHz 20 W GaN Power Amplifier

Mechanical Information

Units: inches Tolerances: unless specified $x.xx = \pm 0.01$ $x.xxx = \pm 0.005$ Materials: Base: Copper Lid: Plastic All metalized features are gold plated Part is epoxy sealed Marking: 2625: Part number YY: Part Assembly year WW: Part Assembly week ZZZ: Serial Number MXXX: Batch ID

TGA2625-CP 10 – 11 GHz 20 W GaN Power Amplifier

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	1B	ESDA/JEDEC JS-001-2014	Caution!
ESD-Charged Device Model (CDM)	C0B	ESDA/JEDEC JS-002-2014	ESD-Sensitive Device
MSL-Moisture Sensitivity Level	N/A		

Solderability

The component leads should be manually soldered, and the package cannot be subjected to conventional reflow processes. Soldering of the component leads is compatible with the latest version of J-STD-020, lead-free solder, 260 °C. The use of no-clean solder to avoid washing after soldering is recommended.

RoHS Compliance

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU. This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

- Web: <u>www.qorvo.com</u>
- Tel: 1-844-890-8163
- Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2018 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 A81-2 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V