TGA2701-SM 3 Watt C-Band Power Amplifier

General Description

The Qorvo TGA2701-SM is a packaged 35 dBm Power Amplifier for C-band applications. The TGA2701-SM provides a nominal 35 dBm of output power at an input power level of 22 dBm with a small signal gain of 18 dB. Nominal TOI is 42 dBm and noise figure is 7.5 dB.

The TGA2701-SM is an overmold QFN 6 x 6 mm surface mount package. It is ideally suited for low cost emerging markets such as point to point radio and communications.

Measured Performance

- Frequency Range: 5.9–9.0 GHz
- Saturation Power: 35 dBm
- P1dB: 34 dBm
- Gain: 18 dB
- TOI: 42 dBm
- PAE: 37%
- NF: 7.5 dB
- Bias: V_{D} = 6 V, I_{D} = 1.0 A, V_{G} = -0.6 V Typical
- Package Dimensions: 6 x 6 x 0.85 mm

Applications

- Point-to-Point Radio
- Communications

Ordering Information

Part	Description
TGA2701-SM	Power Amplifier, Shipping Tray, Qty 50
TGA2701-SMEVB	TGA2701-SM Evaluation Board, Qty 1

Absolute Maximum Ratings 1/

Symbol	Parameter	Value/Range	Notes
V_{D} - V_{G}	Drain to Gate Voltage	9.2 V	
VD	Drain Voltage	8 V	2/
V _G	Gate Voltage Range	-1.2 to +0.5 V	
ID	Drain Current	3.85 A	2/
I _G	Gate Current Range	-14 to 126 mA	
PIN	Input Continuous Wave Power	29 dBm	
T-channel	Channel Temperature	200 °C	2/

Notes:

- 1. These ratings represent the maximum operable values for this device. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device and / or affect device lifetime. These are stress ratings only, and functional operation of the device at these conditions is not implied.
- 2. Combinations of supply voltage, supply current, input power, and output power shall not exceed the maximum power dissipation listed in Table IV

Recommended Operating Conditions

Symbol	Parameter 1/	Value/Range
VD	Drain Voltage	6 V
Ισα	Drain Current	1.0 A
I _D Drive	Drain Current under RF Drive	1.6 A
V _G	Gate Voltage	-0.6 V

Notes:

1. See assembly diagram for bias instructions.

Electrical Specifications

Bias: $V_D = 6 V$, $I_D = 1.0 A$, $V_G = -0.6 V$ Typical, 25 °C

Data are de-embedded to reference lines

	Parameter	Test Conditions	Min	Normal	Max	Units
Gain	Small Signal Gain	F = 5.9 – 9 GHz	16	18	22	dB
IRL	Input Return Loss	F = 5.9 – 9 GHz		-10		dB
ORL	Output Return Loss	F = 5.9 – 9 GHz		-10		dB
P _{SAT}	Saturated Output Power	F = 5.9 – 8.5 GHz F = 9 GHz	34 33	35 34		dBm
P1dB	Output Power @ 1dB Compression	F = 5.9 – 9 GHz		34		dBm
ΤΟΙ	Output TOI	F = 5.9 – 8.5 GHz F = 9 GHz Pout = 20 dBm/tone	39 37	42 40		dBm
NF	Noise Figure	F = 5.9 – 9 GHz		7.5		dB
	Gain Temperature Coefficient	F = 5.9 – 9 GHz		-0.03		dB/°C
	Power Temperature Coefficient	F = 5.9 – 9 GHz		-0.01		dBm/°C

TGA2701-SM 3 Watt C-Band Packaged Power Amplifier

Performance Plots, Small Signal

Bias conditions: V_D = 6 V, I_D = 1000 mA, V_G = -0.6 V Typical, 25 $^\circ\text{C}$

TGA2701-SM 3 Watt C-Band Packaged Power Amplifier

Performance Plots, Power

Bias conditions: V_D = 6 V, I_D = 1000 mA, V_G = -0.6 V Typical, 25 $^\circ C$

TGA2701-SM 3 Watt C-Band Packaged Power Amplifier

Performance Plots, Linearity

Bias conditions: V_D = 6 V, I_D = 1000 mA, V_G = -0.6 V Typical, 25 $^\circ C$

TGA2701-SM 3 Watt C-Band Packaged Power Amplifier

Performance Plots, Noise Figure

Bias conditions: V_D = 6 V, I_D = 1000 mA, V_G = -0.6 V Typical, 25 $^\circ C$

TGA2701-SM 3 Watt C-Band Packaged Power Amplifier

Performance Plots vs Temperature

Bias conditions: V_D = 6 V, I_D = 1000 mA, V_G = -0.6 V Typical

Small Signal Gain vs Bias

Bias conditions: Varies

Power vs Bias

Bias conditions: Varies

Thermal and Reliability Information

Parameter	Test Conditions	Value
Maximum Power Dissipation	TBASEPLATE = 85 °C	P _D = 18.5 W Tchannel = 200 °C
Thermal Resistance, θjc	$V_{D} = 6 V$ $I_{D} = 1A$ $P_{D} = 6 W$ $T_{BASEPLATE} = 85 \ ^{o}C$	θjc = 6.2 °C/W Tchannel = 122 °C Tm = 1.3E+7Hrs
Thermal Resistance, θjc Under RF Drive	$V_D = 6 V$ $I_D = 1.6 A$ $P_{OUT} = 35.5 dBm$ $P_D = 6 W$ $T_{BASEPLATE} = 85 °C$	θjc = 6.2 °C/W Tchannel = 122 °C Tm = 1.3E+7 Hrs
Mounting Temperature		Refer to Assembly Note and Solder Reflow Profiles
Storage Temperature		-65 to 150 °C

Median Lifetime (Tm) vs. Channel Temperature

Electrical Schematic

Bias Procedures

Bias-up Procedure

 V_D (combined all four V_D) set to +6 V

Adjust V_G more positive until I_{DQ} is 1 A. This will be ~ V_G = -0.6 V

Turn off RF signal
Reduce V_G to -1.2 V. Ensure Id ~ 0 mA
Turn V_D to 0 V

Package Pin Assignments

Pin	Description		
4	RF Input, DC blocked		
9	V _G _Bottom		
11	V _{D1} _Bottom		
13	V _{D2} _Bottom		
18	RF Output, DC blocked		
23	V _{D2} _Top		
25	V _{D1} _Top		
27	V _G _Top		
29	Ground		
1, 2, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 26, 28	No internal connections		

TGA2701-SM 3 Watt C-Band Packaged Power Amplifier

Mechanical Drawing

Notes:

- 1. Dimensions in mm
- 2. The package is mold encapsulated with NiPdAu plated leads.
- 3. Package Marking: 2701: Part Number, YY = Part Assembly Year, WW = Part Assembly Week, MXXX = Batch ID

Recommended Assembly Board

Part	Description		
C1, C2, C3, C4	1000 pF Capacitor (0402)		
C5, C6	1 uF Capacitor (0805)		
R1, R2, R3, R4	0 Ohm Resistor Jumper (0402)		

Board is 8 mil thick RO4003 with 1oz copper cladding. Board is mounted on metal block and adequate heatsinking with fan is required.

Solderability

1. Compatible with the latest version of J-STD-020, Lead-free solder, 260 °C peak reflow temperature.

Recommended Soldering Temperature Profile

TGA2701-SM 3 Watt C-Band Packaged Power Amplifier

Handling Precautions

Parameter	Rating	Standard		
ESD – Human Body Model (HBM)	TBD	ESDA/JEDEC JS-001-2012		Caution!
ESD-Charged Device Model (CDM)	TBD	ESDA/JEDEC JS-002-2014	Le A	ESD-Sensitive Device
MSL – Convection Reflow 260 °C	3	JEDEC standard IPC/JEDEC J-STD-020		

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Qorvo:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2020 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V