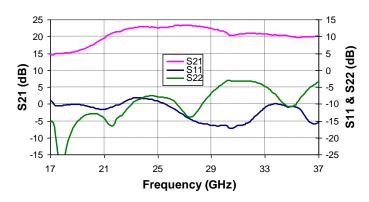
QOCVO

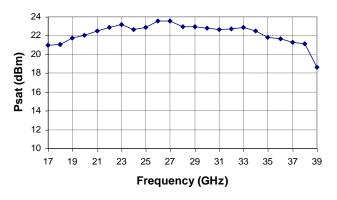
TGA4030-SM 17–37 GHz GaAs MPA/Multiplier

General Description

The Qorvo TGA4030-SM is a Medium Power Amplifier and Multiplier for wide band 17–37 GHz applications. The part is designed using Qorvo's 0.15 um power pHEMT process.


The TGA4030-SM provides a nominal 20 dB small signal gain with 22 dBm maximum output power. For 2x and 3x Multiplier Function, TGA4030-SM provides 15 dBm typical output power @ 9 dBm P_{IN} .

This part is ideally suited for applications such as Point-to-Point Radio, EW, instrumentation and frequency multipliers.



Measured Performance

Bias at $V_D = 5 \text{ V}$, $I_D = 140 \text{ mA}$ and $V_G = -0.75 \text{ V}$ (Typical)

Bias at $V_D = 5 \text{ V}$, $I_D = 140 \text{ mA}$ and $V_G = -0.75 \text{ V}$ (Typical)

Applications

- Point-to-Point Radio
- EW
- Instrumentation
- Frequency Multiplier

Ordering Information

Part	Description
TGA4030-SM	Amplifier, Waffle Pack, Qty 100
TGA4030-SMEVB	TGA4030-SM Evaluation Board, Qty 1

Product Features

- RF Output Frequency Range: 17-37 GHz
- 20 dB Nominal Gain
- 22 dBm Nominal Output Maximum Power
- 2x and 3x Multiplier Function
- Bias: V_D = 5 V, I_D = 140 mA
- Package Dimensions: 3.0 x 3.0 x 0.85 mm

QOULO

TGA4030-SM 17–37 GHz GaAs MPA/Multiplier

Absolute Maximum Ratings

Symbol	Parameter	Value/Range	Notes
V _D -V _G	Drain to Gate Voltage	8	V
VD	Drain Supply Voltage Range	6	V
V _G	Gate Supply Voltage Range	-3 - 0	V
ID	Drain Current	400	mA
l _G	Gate Current	1.38	mA
PIN	Input Continuous Wave Power	20	dBm
Ts	Storage Temperature	-55 to +150	°C

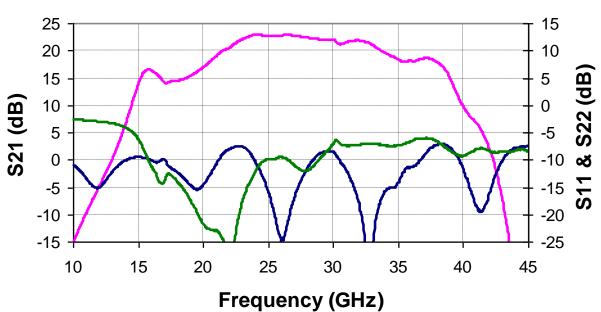
Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

See application pages for amplifier, 2x multiplier and 3x multiplier bias conditions

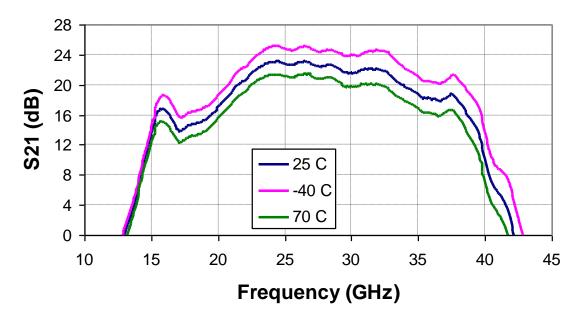
Symbol	Parameter	Value/Range, Amp	Value/Range, x2 Multi	Value/Range, x3 Multi	Units
VD	Drain Voltage	5	5	5	V
ID	Drain Current	140	120	160	mA
V_{G}	Gate Voltage (Typ)	-0.75	-0.75	-0.75	V
V _{D1}	Drain Voltage	5	5	1	V
V _{G1}	Gate Voltage	same as V_{G}	-1.1	same as V_{G}	V

RF Characterization Table


See application pages for amplifier, 2x multiplier and 3x multiplier bias conditions, TA= 25 °C

Data de-embedded to reference lines

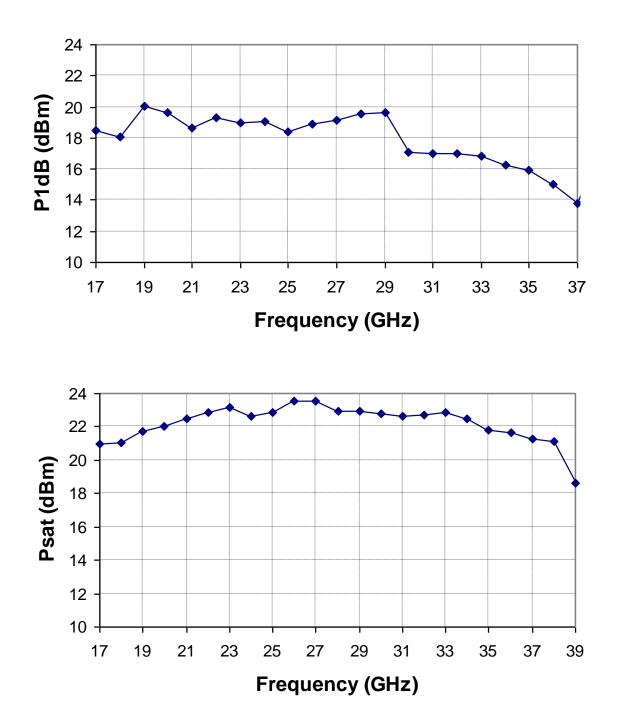
Parameter	Amplifier	2x Multiplier	3x Multiplier	Units
RF Output Frequencies	17-37	22-38	23-31	GHz
S21, Small Signal Gain	20			dB
S11, Input Return Loss	10			dB
S22, Output Return Loss	5	5	5	dB
PSAT, Maximum Output Power	22			dBm
P1dB, Output Power @ 1 dB Gain Compression	18			dBm
IMD3@ 11 dBm Pout/Tone	30			dBc
Output Power @ P _{IN} = 9 dBm		15	15	dBm
Conversion Gain		9	5	dB
Gain Temperature coefficient	-0.04			dB/°C



Measured Data, Amplifier

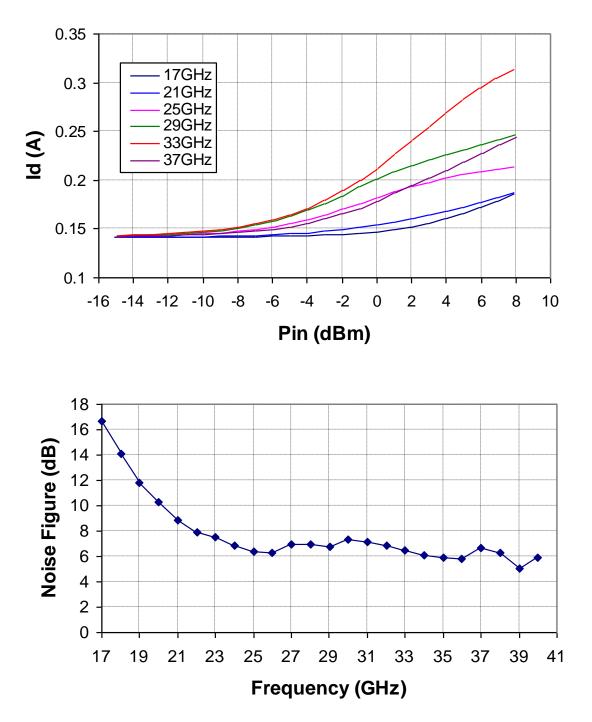
Bias Conditions: $V_D = 5 \text{ V}$, $I_{DQ} = 140 \text{ mA}$, $V_G = -0.75 \text{ V}$ (Typical), 25 °C

This is device s-parameter

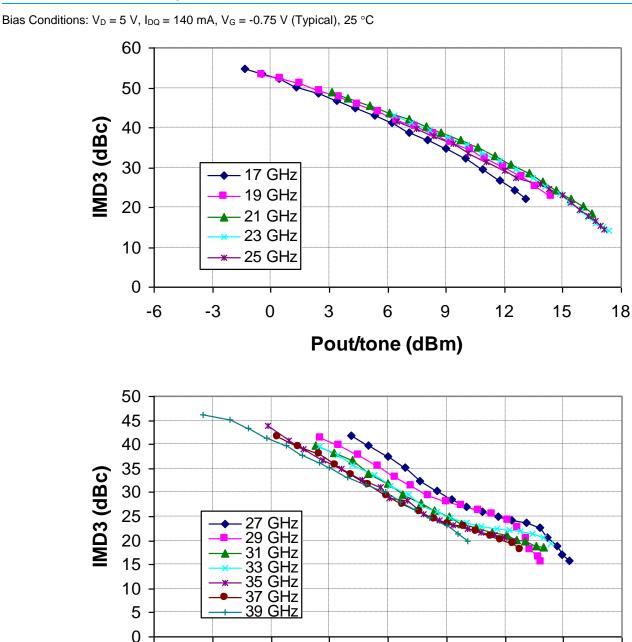


This is evaluation board s-parameter

Measured Data, Amplifier


Bias Conditions: V_D = 5 V, I_{DQ} = 140 mA, V_G = -0.75 V (Typical), 25 $^\circ\text{C}$

Measured Data, Amplifier


Bias Conditions: V_D = 5 V, I_{DQ} = 140 mA, V_G = -0.75 V (Typical), 25 $^\circ\text{C}$

QOULO

TGA4030-SM 17-37 GHz GaAs MPA/Multiplier

Measured Data, Amplifier

Pout/tone (dBm)

9

12

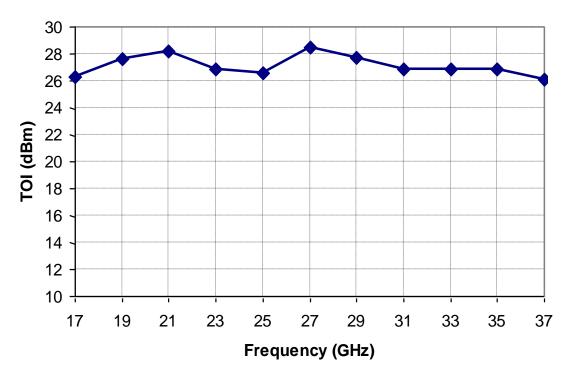
15

18

21

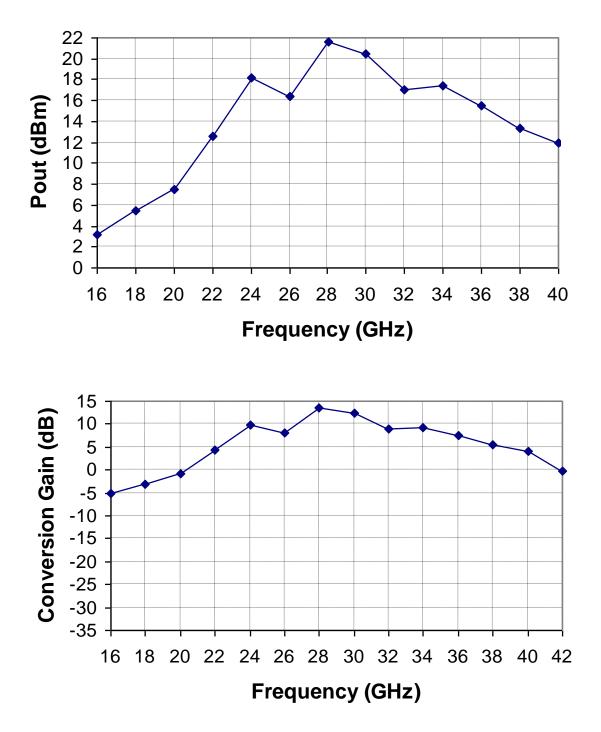
6

3

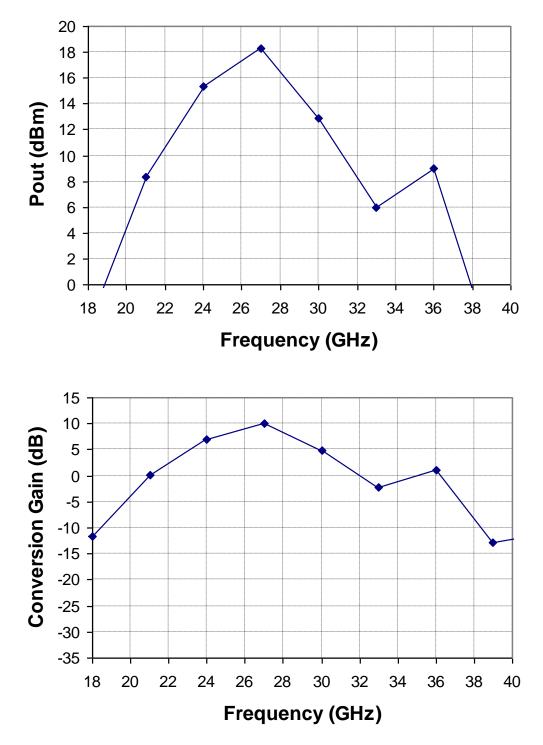

-3

0

Measured Data, Amplifier


Bias Conditions: V_D = 5 V, I_{DQ} = 140 mA, V_G = -0.75 V (Typical), 25 $^\circ\text{C}$

Measured Data, 2X Multiplier


Bias Conditions: V_D = 5 V, I_{DQ} = 120 mA, V_{G1} = -1.1 V, P_{IN} = 9 dBm, 25 \ ^\circ C

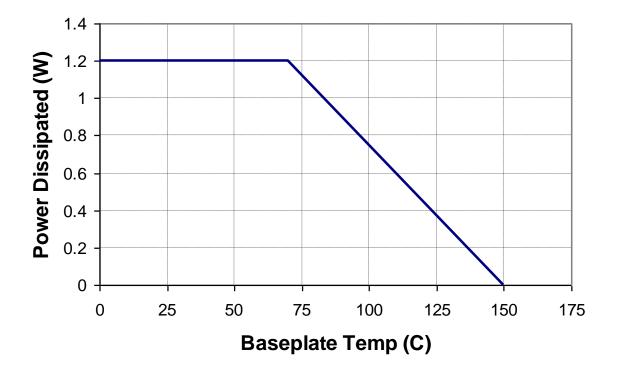
Measured Data, 3X Multiplier

Bias Conditions: V_D = 5 V, V_{D1} = 1 V, I_{DQ} = 160 mA, P_{IN} = 9 dBm, 25 °C

QOULO

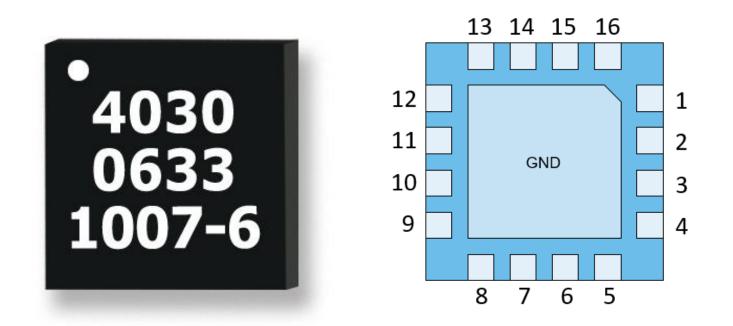
TGA4030-SM 17–37 GHz GaAs MPA/Multiplier

Power Dissipation and Thermal Properties

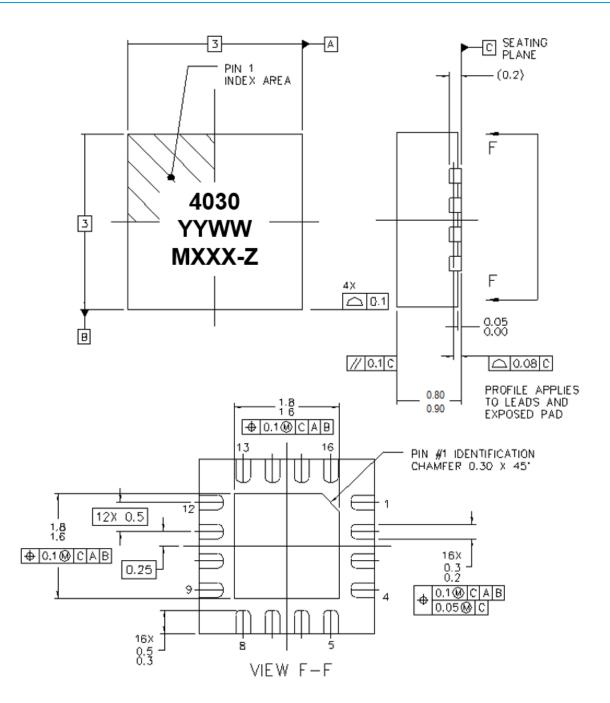

Parameter	Test Conditions	Value	Units
Thermal Resistance (θ _{JC})	Under RF Drive	66.7	°C/W
Channel Temperature (T _{CH}) ⁽²⁾	P _D = 1.2 W	150	°C
Median Lifetime (T _M) ⁽¹⁾	TBASEPLATE = 70 °C	1.0 E + 6	Hrs
Thermal Resistance (θ _{JC})	Quiescent, Small Signal	65.7	°C/W
Channel Temperature (T _{CH}) ⁽²⁾	$V_D = 5 V$, $I_D = 140 mA$, $P_D = 0.7 W$	116	°C
Median Lifetime (T _M) ⁽¹⁾	T _{BASEPLATE} = 70 °C	2.4 E+7 Hrs	Hrs

Notes:

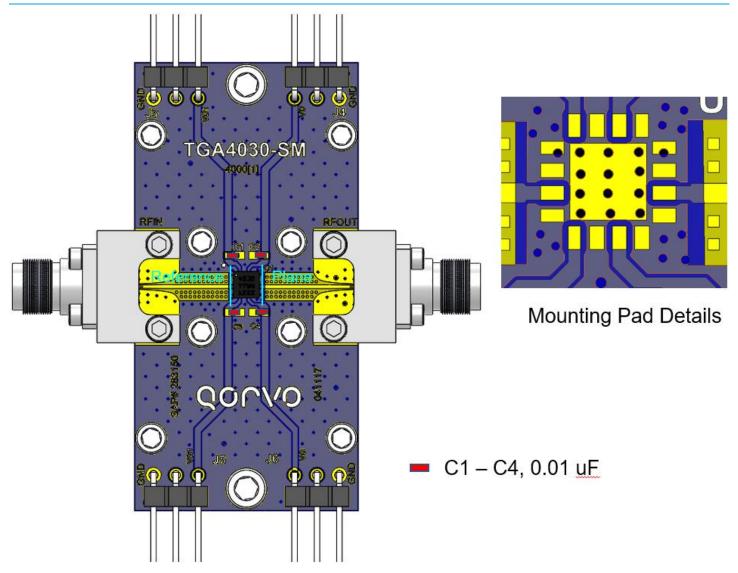
1. For a median life, Tm, of 1 E+6 hours, power dissipation is limited to


Pd(max) = (T_{CHANNEL} °C – T_{BASE} °C)/θjc

2. Channel operating temperature will directly affect the device median time to failure (MTTF). For maximum life, it is recommended that channel temperatures be maintained at the lowest possible levels.

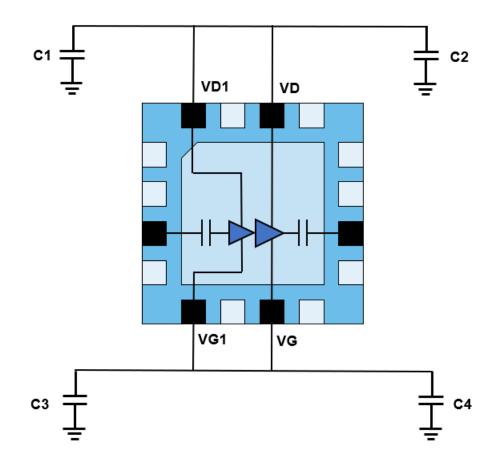

Mechanical Drawing & Pad Description

Pin Number	Label	Description
1, 2, 4, 9, 11, 12 (slug)	GND	Ground
3	RF Input	Matched to 50 ohms, DC blocked
5	VG1	Stage 1 Gate Voltage
7	VG	Other Stages Gate Voltage
10	RF Output	Matched to 50 ohms, DC blocked
14	VD	Other Stages Drain Voltage
16	VD1	Stage 1 Drain Voltage
6, 8, 13, 15	N/C	No internal connection. Recommend to GND at the PCB level


Mechanical Drawing

Dimensions in mm, package is mold encapsulated with Tin plated lead finish Part Marking: 4030 = Part Number, YY = Part Assembly Year WW = Part Assembly Week, MXXX-Z = Batch ID

Evaluation Board

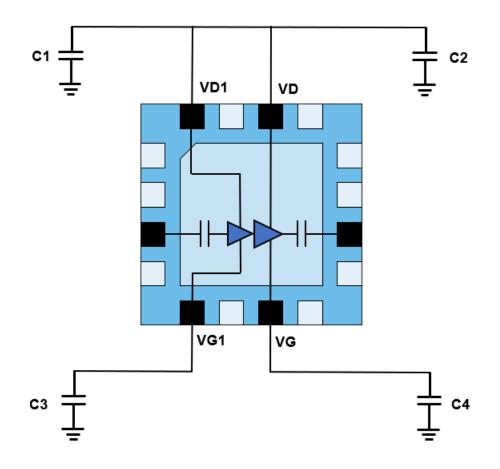


Notes:

- 1. C1 C4 0402 0.01 uF capacitors
- 2. Board material is 8 mil ROGERS RO4003

Application Circuit, Device as Amplifier

Bias-up Procedure

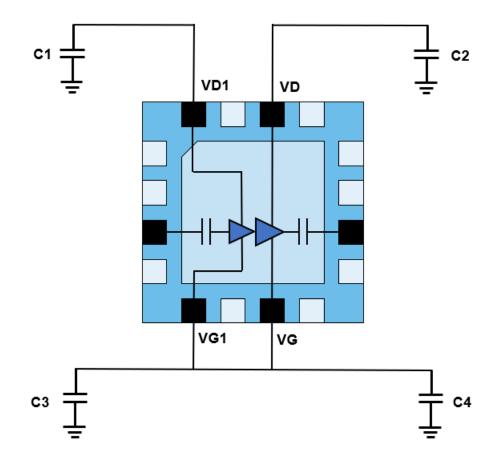

- 1. Set I_D limit to 400 mA, I_G limit to 2 mA
- 2. Set V_G to -1.5 V
- 3. Set V_D +5 V
- 4. Adjust V_G more positive until I_{DQ} = 140 mA
- 5. Apply RF signal

Bias-down Procedure

- 1. Turn off RF signal
- 2. Reduce V_G to -1.5 V. Ensure I_{DQ} ~ 0 mA
- 3. Set V_D to 0 V
- 4. Turn off V_{D} supply
- 5. Turn off V_{G} supply

Application Circuit, Device as x2 Multiplier

Bias-up Procedure


- 1. Set I_D limit to 400 mA, I_G and I_{G1} limit to 2 mA each.
- 2. Set V_G to -1.5 V, Set V_{G1} = -1.1 V (fixed)
- 3. Set V_D +5 V
- 4. Adjust V_G more positive until I_{DQ} = 120 mA
- 5. Apply RF signal

Bias-down Procedure

- 1. Turn off RF signal
- 2. Reduce V_G to –1.5 V. Ensure $I_{DQ} \sim 0$ mA
- 3. Set V_D to 0 V
- 4. Turn off V_D supply
- 5. Turn off V_{G} and V_{G1} supply

Application Circuit, Device as x3 Multiplier

Bias-up Procedure

- 1. Set I_D limit to 400 mA, Set I_{D1} Limit to 50 mA, I_G limit to 2 mA
- 2. Set V_G to -1.5 V
- 3. Set $V_D = +5 V$, Set $V_{D1} = +1 V$
- 4. Adjust V_G more positive until $I_{D1} + I_D = 160 \text{ mA}$
- 5. Apply RF signal

Bias-down Procedure

- 1. Turn off RF signal
- 2. Reduce V_G to -1.5 V. Ensure I_{DQ} ~ 0 mA
- 3. Set V_{D1} and V_D to 0 V
- 4. Turn off V_{D1} and V_D supply
- 5. Turn off V_G supply

QOCVO

TGA4030-SM 17–37 GHz GaAs MPA/Multiplier

Recommended Surface Mount Package Assembly

Clean the board with acetone. Rinse with alcohol. Allow the circuit to fully dry.

Qorvo recommends using a conductive solder paste for attachment. Follow solder paste and reflow oven vendors' recommendations when developing a solder reflow profile.

Hand soldering is not recommended. Solder paste can be applied using a stencil printer or dot placement. The volume of solder paste depends on PCB and component layout and should be well controlled to ensure consistent mechanical and electrical performance

Typical Soldier Reflow Profiles

Reflow Profiles	SnPb	Pb Free
Ramp-up rate	3 °C/sec	3 °C/sec
Activation Time and Temperture	60-120 sec @ 140-160 °C	60-180 sec @ 150-200 °C
Time above Melting point	60-150 sec	60-150 sec
Max Peak Temperature	240 °C	260 °C
Time within 5 °C of Peak Temperature	10-20 sec	10-20 sec
Ramp-down Rate	4-6 °C/sec	4-6 °C/sec

QOCVO

TGA4030-SM 17–37 GHz GaAs MPA/Multiplier

Handling Precautions

Parameter	Rating	Standard		
ESD – Human Body Model (HBM)	0B	ESDA/JEDEC JS-001-2017		Caution!
ESD-Charged Device Model (CDM)	C3	ESDA/JEDEC JS-002-2014		ESD-Sensitive Device
MSL – Moisture Sensitivity Level	3	JEDEC standard IPC/JEDEC		
	5	J-STD-020	_	

RoHS Compliance

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations.

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V