

17 - 43 GHz MPA / Multiplier

Key Features

- Frequency: 17 43 GHz
- 25 dB Nominal Gain @ Mid-band
- 22 dBm Nominal Output P1dB
- 2x and 3x Multiplier Function
- 0.15 um 3MI pHEMT Technology
- Chip Dimensions 1.72 x 0.76 x 0.10 mm (0.068 x 0.030 x 0.004 in)

Primary Applications

- Point-to-point radio
- EW
- Instrumentation
- Frequency Multiplier

Product Description

The TriQuint TG4040 is a Medium Power Amplifier and Multiplier for a wide band of 17 – 43GHz applications. The part is designed using TriQuint's 0.15um power pHEMT production process.

The TGA4040 provides a nominal 25 dB small signal gain with 22 dBm output power @ 1 dB gain compression. For 2x and 3x Multiplier Function, TGA4040 provides 15 dBm typical of Output Power @ 9 dBm Pin.

The part is ideally suited for applications such as Point-to-Point Radio, EW, Instrumentation and frequency multipliers.

The TGA4040 is 100% DC and RF tested onwafer to ensure performance compliance.

The TGA4040 has a protective surface passivation layer providing environmental robustness.

Lead-Free & RoHS compliant.

Amplifier Performance

Datasheet subject to change without notice

TABLE I MAXIMUM RATINGS 1/

SYMBOL	PARAMETER	VALUE	NOTES
Vd	Drain Voltage	6 V	<u>2</u> /
Vg	Gate Voltage Range	-2 TO 0 V	
ld	Drain Current	TBD	<u>2</u> / <u>3</u> /
Ig	Gate Current	7 mA	<u>3</u> /
P_{IN}	Input Continuous Wave Power	20 dBm	
P_{D}	Power Dissipation	1.95 W	<u>2</u> / <u>4</u> /
T _{CH}	Operating Channel Temperature	200 °C	<u>5</u> /
	Mounting Temperature (30 Seconds)	320 °C	
T_{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings represent the maximum operable values for this device.
- $\underline{2}$ / Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D .
- 3/ Total current for the entire MMIC.
- 4/ When operated at this power dissipation with a base plate temperature of 70 °C, the median life is 7.3E3 hours.
- 5/ Junction operating temperature will directly affect the device median time to failure (Tm). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

TABLE II ELECTRICAL CHARACTERISTICS

 $(Ta = 25 \, {}^{\circ}C \, Nominal)$

PARAMETER	Amplifier	2x Multiplier	3x Multiplier	UNITS
Frequency Range	17 - 43	9 - 22	6 - 12	GHz
Drain Voltage, Vd1*	-	-	1	V
Drain Voltage, Vd*	5	5	5	V
Total Drain Current*	139	120	160	mA
Gate Voltage, Vg1*		-1.1	-0.6	V
Gate Voltage, Vg*	-0.65	-0.65		V
Small Signal Gain, S21	25	-	-	dB
Input Return Loss, S11	12	-	-	dB
Output Return Loss, S22	8	-	-	dB
Output Power @ 1dB Gain compression, P1dB 5V @ 139mA 5V @ 225mA	20 22	-	-	dBm
Output TOI	28	-	-	dBm
Output Power @ Pin = 9dBm	-	15	15	dBm
Gain Temperature Coefficient	-0.04	-	-	dB/ ⁰ C

^{*} See bias plan on page 8 for amplifier and 2x multiplier, page 9 for 3x multiplier

TABLE III
THERMAL INFORMATION

PARAMETER	TEST CONDITIONS	Т _{сн} (°С)	θ _{JC} (°C/W)	Tm (HRS)
θ_{JC} Thermal Resistance (channel to Case)	Vd = 5 V Id = 139 mA Pdiss = 0.69 W	116	66.7	6.3E+7

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70 °C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

Median Lifetime (Tm) vs. Channel Temperature

Measured Amplifier Data Bias Conditions: Vd = 5 V, Idq = 139 mA

Measured 3X Multiplier Data

Mechanical Drawing

Units: millimeters (inches)

Thickness: 0.100 (0.004)

Chip edge to bond pad dimensions are shown to center of bond pad

Chip size tolerance: +/- 0.051 (0.002) GND is back side of MMIC

Bond pad #1: (RF In) 0.100 x 0.150 (0.004 x 0.006) Bond pad #2, #3, #6, #7, #9, #10, #12, #14: (GND) 0.081 x 0.081 (0.003 x 0.003) 0.081 x 0.081 (0.003 x 0.003) 0.081 x 0.081 (0.003 x 0.003) 0.100 x 0.150 (0.004 x 0.006) Bond pad #4: (Vd1) Bond pad #5: (Vd) (RF Out) Bond pad #8: 0.081 x 0.081 (0.003 x 0.003) Bond pad #11: (Vg) Bond pad #13: 0.081 x 0.081 (0.003 x 0.003) (Vg1)

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Recommended Chip Assembly Diagram Amplifier & 2x Multiplier

Amplifier

Set Vd = 5.0V

Vary (Vg + Vg1) to achieve Id = 139mA

2x Multiplier

Set Vd = 5.0V

Set Vg1 = -1.1V

Vary Vg to achieve Id = 120mA

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Recommended Chip Assembly Diagram 3x Multiplier

3x Multiplier

Set Vd = 5.0V

Set Vd1 = 1.0V

Vary (Vg + Vg1) to achieve(Id + Id1) = 160mA

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300°C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V