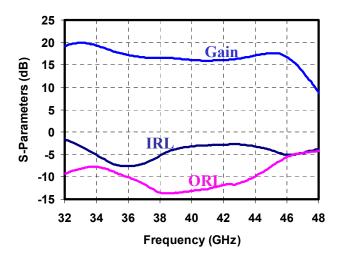
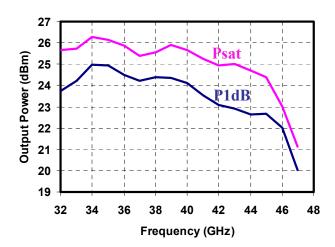





# 32 – 45 GHz Wide Band Driver Amplifier





### **Key Features**

- Frequency Range: 32 45 GHz
- 25 dBm Nominal Psat @ 38 GHz
- 24 dBm P1dB @ 38 GHz
- 16 dB Nominal Gain @ 38 GHz
- 33 dBm OTOI @ 16dBm/Tone
- Bias: 6 V @ 175 mA ldq
- 0.15 um 3MI pHEMT Technology
- Chip Dimensions 1.60 x 0.75 x 0.10 mm (0.063 x 0.030 x 0.004 in)

### **Measured Fixtured Data**

Bias Conditions: Vd = 6 V, Idq = 175 mA





### **Primary Applications**

- Digital Radio
- Point-to-Point Radio
- Point-to-Multipoint Communications
- Military SAT-COM

## **Product Description**

The TriQuint TGA4521 is a compact Driver Amplifier MMIC for Ka-band and Q-band applications. The part is designed using TriQuint's 0.15um power pHEMT production process.

The TGA4521 nominally provides 25 dBm saturated output power, and 24 dBm output power at 1dB Gain compression @ 38 GHz. It also has typical gain of 16 dB.

The part is ideally suited for low cost emerging markets such as Digital Radio, Point-to-Point Radio and Point-to-Multi Point Communications.

The TGA4521 is 100% DC and RF tested on-wafer to ensure performance compliance.

Lead-Free & RoHS compliant.

Evaluation boards are available upon request.





TABLE I MAXIMUM RATINGS <u>1</u>/

| SYMBOL           | PARAMETER                         | VALUE                     | NOTES                 |
|------------------|-----------------------------------|---------------------------|-----------------------|
| Vd               | Drain Voltage                     | 6.5 V                     | <u>2</u> /            |
| Vg               | Gate Voltage Range                | -2 TO 0 V                 |                       |
| ld               | Drain Current                     | 350 mA                    | <u>2</u> / <u>3</u> / |
| Ig               | Gate Current                      | 9 mA                      | <u>3</u> /            |
| P <sub>IN</sub>  | Input Continuous Wave Power       | 20 dBm                    |                       |
| P <sub>D</sub>   | Power Dissipation                 | See note <u>4</u> /       | <u>2</u> /            |
| Т <sub>сн</sub>  | Operating Channel Temperature     | 150 <sup>0</sup> C        | <u>5</u> / <u>6</u> / |
| Τ <sub>M</sub>   | Mounting Temperature (30 Seconds) | 320 <sup>0</sup> C        |                       |
| T <sub>STG</sub> | Storage Temperature               | -65 to 150 <sup>0</sup> C |                       |

- 1/ These ratings represent the maximum operable values for this device.
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P<sub>D</sub>
- 3/ Total current for the entire MMIC.
- 4/ For a median life time of 1E+6 hrs, Power dissipation is limited to:

 $P_D(max) = (150 \ {}^{0}C - T_{BASE} \ {}^{0}C) / 70 \ ({}^{0}C/W)$ 

Where  $T_{BASE}$  is the base plate temperature.

- 5/ Junction operating temperature will directly affect the device median time to failure (MTTF). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 6/ These ratings apply to each individual FET.





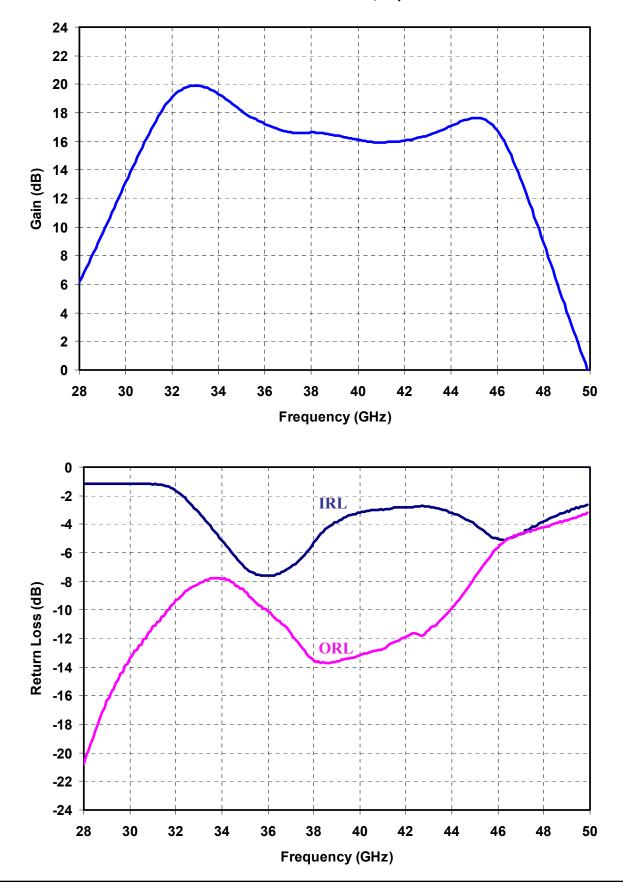
#### TABLE II ELECTRICAL CHARACTERISTICS

| PARAMETER                            | FREQUENCY (GHz) | MIN  | TYPICAL | UNITS |  |  |  |  |
|--------------------------------------|-----------------|------|---------|-------|--|--|--|--|
| Frequency Range                      |                 |      | 32 - 45 | GHz   |  |  |  |  |
| Drain Voltage, Vd                    |                 |      | 6.0     | V     |  |  |  |  |
| Drain Current, Id                    |                 |      | 175     | mA    |  |  |  |  |
| Gate Voltage, Vg                     |                 |      | -0.7    | V     |  |  |  |  |
|                                      | 32              | 14.5 | 20      |       |  |  |  |  |
| Small Signal Gain, S21               | 36 - 38         | 15.5 | 17      | dB    |  |  |  |  |
|                                      | 44              | 14   | 17      |       |  |  |  |  |
|                                      | 32              | 1    | 1.5     |       |  |  |  |  |
| Insuit Deturn Lass, 011              | 36              | 3.5  | 8       | dB    |  |  |  |  |
| Input Return Loss, S11               | 38              | 2.5  | 5       |       |  |  |  |  |
|                                      | 44              | 2    | 3       |       |  |  |  |  |
| Output Datum Laga C22                | 32 - 38         | 8    | 10      | ٦Þ    |  |  |  |  |
| Output Return Loss, S22              | 44              | 4    | 10      | dB    |  |  |  |  |
| Output Power @ 1dB Gain Compression, | 38              | 24   | 24.5    |       |  |  |  |  |
| P1dB                                 | 32 - 45         |      | 23.5    | dBm   |  |  |  |  |
| Saturated Power, Psat                |                 |      | 25      | dBm   |  |  |  |  |
|                                      | 38              | 31   | 33      | dBm   |  |  |  |  |
| OTOI @ Pin = 1dBm                    | 32 - 45         |      | 33      |       |  |  |  |  |

(Ta = 25 °C Nominal)

#### TABLE III THERMAL INFORMATION

| PARAMETER                                                | TEST CONDITIONS                           | Т <sub>сн</sub><br>( <sup>о</sup> С) | R <sub>θJC</sub><br>(°C/W) | T <sub>M</sub><br>(HRS) |
|----------------------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------|-------------------------|
| R <sub>θJC</sub> Thermal Resistance<br>(channel to Case) | Vd = 6 V<br>Id = 175 mA<br>Pdiss = 1.05 W | 144                                  | 70                         | 2.0E+6                  |

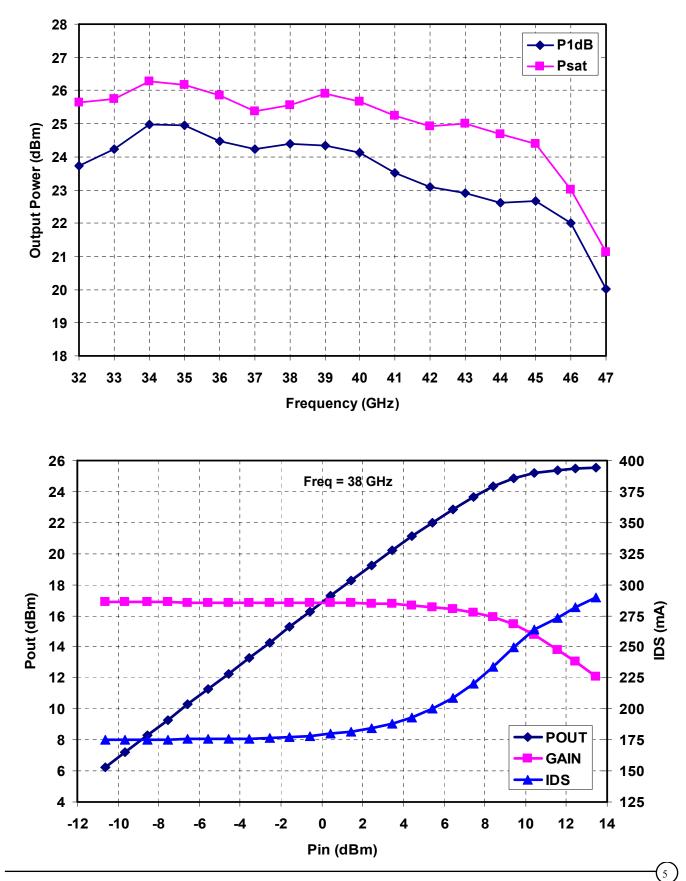

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70 °C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

(3)





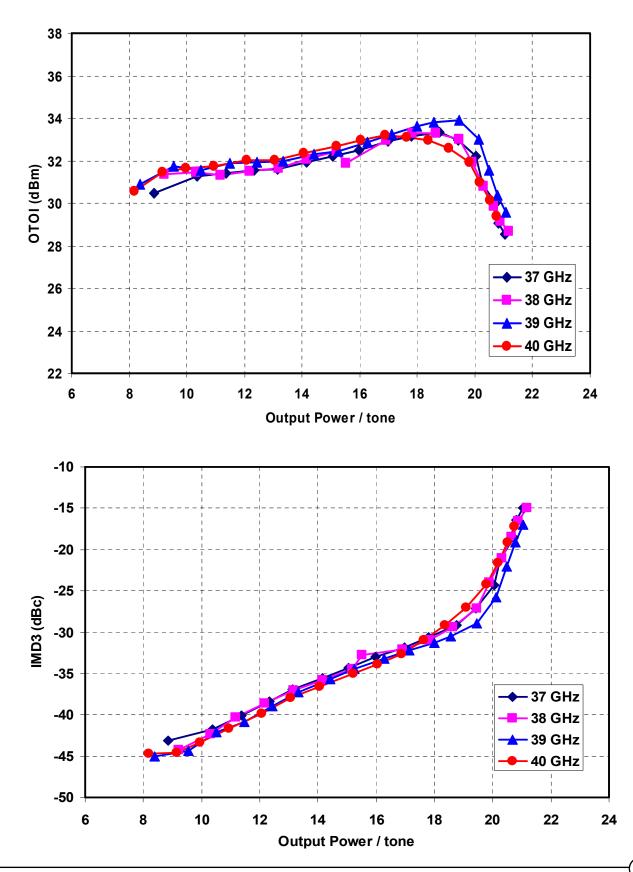
**Measured Data** Bias Conditions: Vd = 6 V, Idq = 175 mA







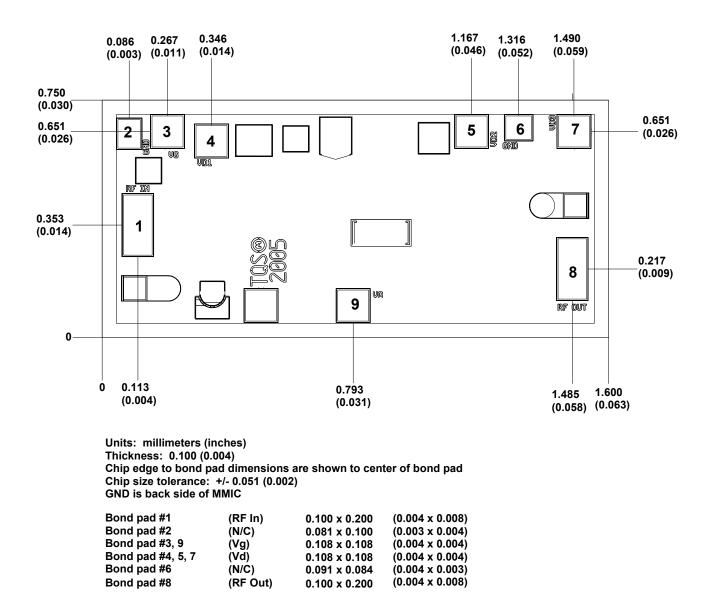

Measured Data


Bias Conditions: Vd = 6 V, Idq = 175 mA







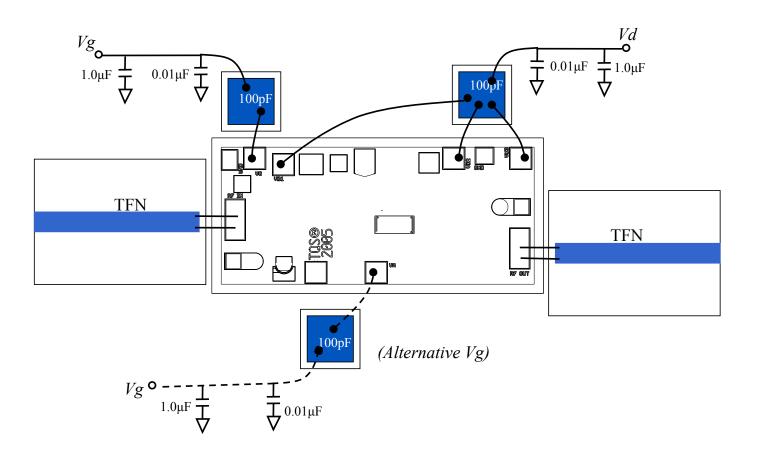

**Measured Data** Bias Conditions: Vd = 6 V, Idq = 175 mA,  $\Delta f$ =10MHz







### **Mechanical Drawing**




GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.





# **Recommended Chip Assembly Diagram**



Bias Conditions: Vd = 6 V Vg =  $\sim$  -0.7 V to get 175mA ld

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

8)



### **Assembly Process Notes**

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- · Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment (i.e. epoxy) can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.

Reflow process assembly notes:

- Use AuSn (80/20) solder and limit exposure to temperatures above 300°C to 3-4 minutes, maximum.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- Do not use any kind of flux.
- · Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Interconnect process assembly notes:

- Ball bonding is the preferred interconnect technique, except where noted on the assembly diagram.
- Force, time, and ultrasonics are critical bonding parameters.
- Aluminum wire should not be used.
- Devices with small pad sizes should be bonded with 0.0007-inch wire.

### **Ordering Information**

| Part    | Package Style |
|---------|---------------|
| TGA4521 | GaAs MMIC Die |

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

9)

TGA4521

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V