

K-Band Power Amplifier

Product Overview

The TriQuint TGA4532-SM is a K-Band Power Amplifier. The TGA4532-SM operates from 17.7 - 19.7 GHz and is designed using TriQuint's power pHEMT production process.

The TGA4532-SM typically provides 32.5 dBm of saturated output power with small signal gain of 23 dB.

The TGA4532-SM is available in a low-cost, surface mount 20 lead 4x4 QFN package and is ideally suited for Point-to-Point Radio.

Lead-free and RoHS compliant

Evaluation Boards are available upon request.

QFN 20 lead 4.0 x 4.0 mm

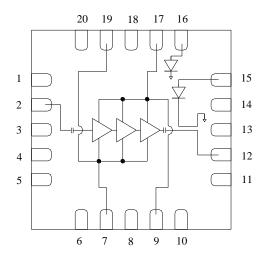
Key Features

Frequency Range: 17.7 – 19.7 GHzPower: 32.5 dBm Psat, 31 dBm P1dB

• Gain: 23 dB

TOI: 41 dBm at 20 dBm/tone

NF: 7 dB


Integrated Power Detector

Bias: Vd = 6 V, Idq = 900 mA, Vg = -0.68 V Typical

• Package Dimensions: 4.0 x 4.0 x 0.85 mm

Performance is typical across frequency. Please reference electrical specification table and data plots for more details.

Functional Block Diagram

Applications

- Point-to-Point Radio
- K-band Sat-Com

Ordering Information

Part No.	ECCN	Description
TGA4532-SM	EAR99	K-Band Power Amplifier

Standard T/R size = 500 pieces on a 7" reel

Absolute Maximum Ratings

Parameter	Rating
Drain Voltage, Vd	+6.5 V
Gate Voltage, Vg	-4 to 0 V
Drain to Gate Voltage, Vd – Vg	10 V
Drain Current, Id	1960 mA
Gate Current, Ig	-8.2 to 113 mA
Power Dissipation, Pdiss	12.7 W
RF Input Power, CW, T = 25°C	26 dBm
Channel Temperature, Tch	200 °C
Mounting Temperature (30 Seconds)	260 °C
Storage Temperature	-40 to 150 °C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

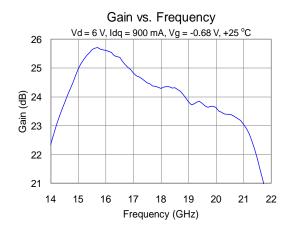
Recommended Operating Conditions

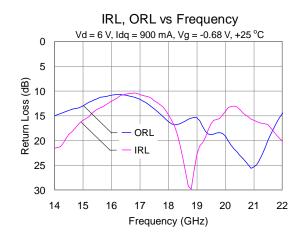
Parameter	Min	Тур	Max	Units
Drain Voltage (V _D)		6		V
I _{DQ}		900		mA
I _{D_Drive} (Under RF)		1200		mA
V _G		-0.68		V

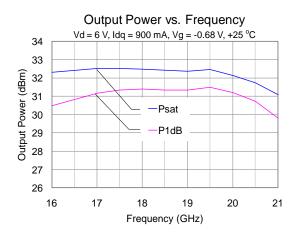
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

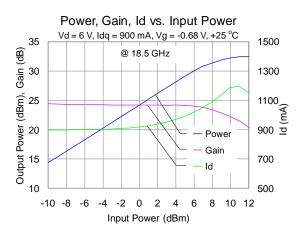
Electrical Specifications

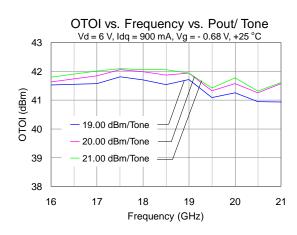
Parameter	Conditions (1)	Min	Тур	Max	Units
Operational Frequency Range		17.7		19.7	GHz
Gain		19	23		dB
Input Return Loss		10	12		dB
Output Return Loss		10	15		dB
Output Power at Saturation, Psat			32.5		dBm
Output Power at 1dB Gain Compression		29.5	31		dBm
Output TOI		38	41		dBm
Noise Figure			7		Db
Gain Temperature Coefficient			-0.023		dB/°C
Power Temperature Coefficient			-0.005		dBm/°C

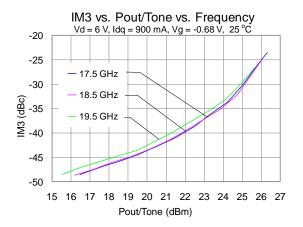

Notes:

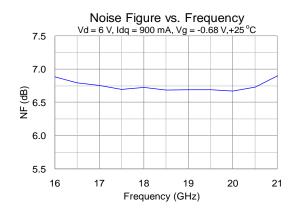

1. Test conditions unless otherwise noted: VD=6V, IDQ=900mA, VG=-0.68V typical, Temp = +25 °C

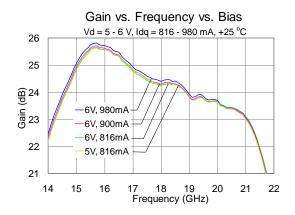


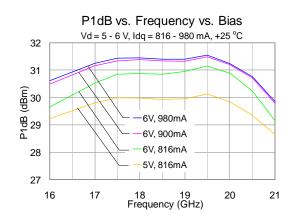

Performance Plots

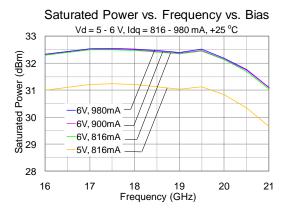

Test conditions unless otherwise noted: VD=6V, IDQ=900mA, VG=-0.68V typical, Temp = +25 °C

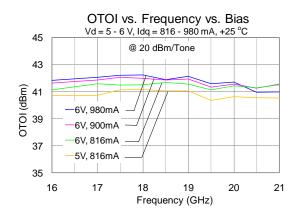


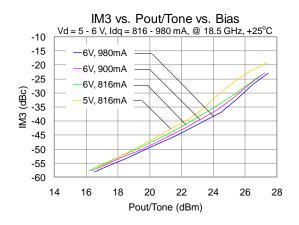


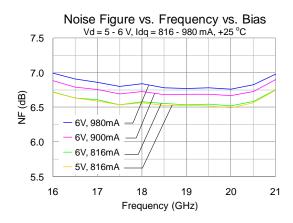


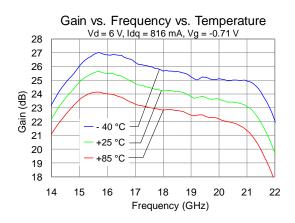


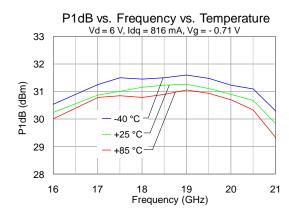

Performance Plots

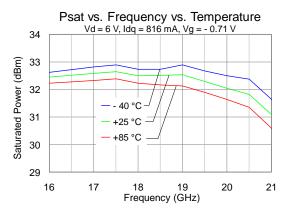

Test conditions unless otherwise noted: VD=6V, IDQ=900mA, VG=-0.68V typical, Temp = +25 °C

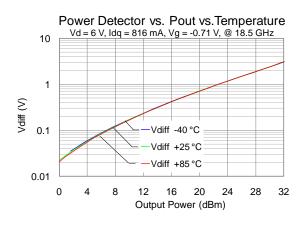


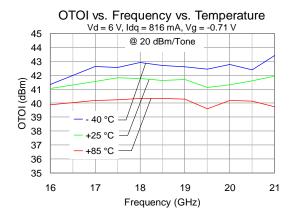




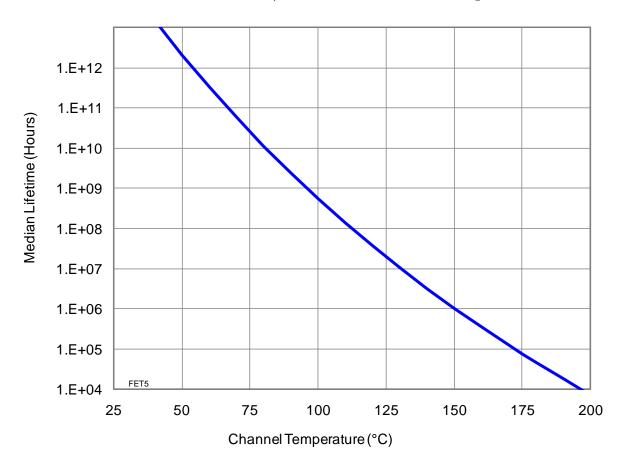



Performance Plots


Test conditions unless otherwise noted: VD=6V, IDQ=900mA, VG=-0.68V typical, Temp = +25 °C

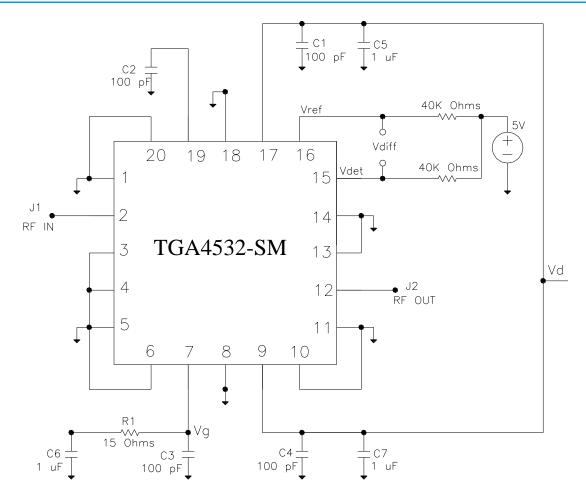


Thermal and Reliability Information


Parameter	Test Conditions	Value	Units
Thermal Resistance (θ _{JC}) (1)	CW	8.51	°C/W
Channel Temperature, T _{CH}	$T_{baseplate} = +85 \text{ °C}, V_D = +6 \text{ V}, I_{DQ} = 900 \text{ mA},$	131	°C
Median Lifetime (T _M)	P _{DISS} = 5.4 W	9.5 x 10 ⁶	Hrs
Thermal Resistance (θ _{JC}) ⁽¹⁾	CW	4.17	°C/W
Channel Temperature, T _{CH} (Under RF)	$T_{\text{baseplate}} = +85 \text{ °C}, V_D = +6 \text{ V}, I_D = 1200 \text{ mA},$	131	°C
Median Lifetime (T _M)	Pout = 32.5 dBm, Pbiss = 5.4 W	9.5 x 10 ⁶	Hrs

Notes:

1. Channel operating temperature will directly affect the device median lifetime (Tm). For maximum life, it is recommended that the channel temperatures be maintained at the lowest possible levels. Thermal resistance measured at back of package.


Median Lifetime

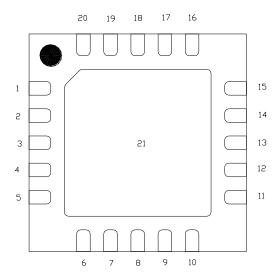
Test Conditions: V_D = +6 V; Failure Criteria is 10% reduction in I_{D_MAX}

Application Circuit

Notes:

- 1. Vg can be biased from either side (pin 7 or pin 19), and the non-biased side can be left open.
- 2. Vd must be biased from both sides (pin 9 and pin 17).

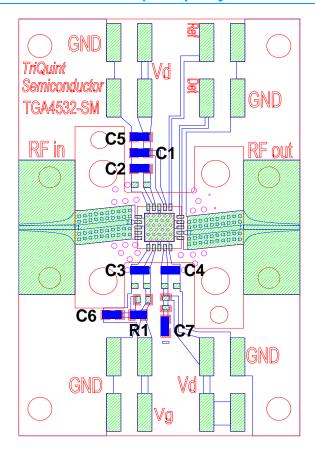
Bias Up Procedure

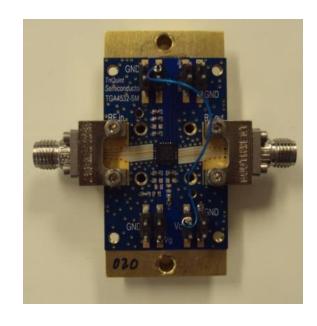

- 1. Apply -1.5 V to V_G
- 2. Apply +6 V to V_D ; ensure I_{DQ} is approx. 0 mA
- 3. Adjust V_G until $I_{DQ} = 900 \text{ mA}$ ($V_G \sim -0.68 \text{ V Typ.}$).
- 4. Turn on RF supply

Bias Down Procedure

- 1. Turn off RF supply
- 2. Reduce V_G to -1.5 V; ensure I_{DQ} is approx. 0 mA
- 3. Set V_D to 0 V
- 4. Turn off V_D supply
- 5. Turn off V_G supply

Pad Configuration and Description




TOP VIEW

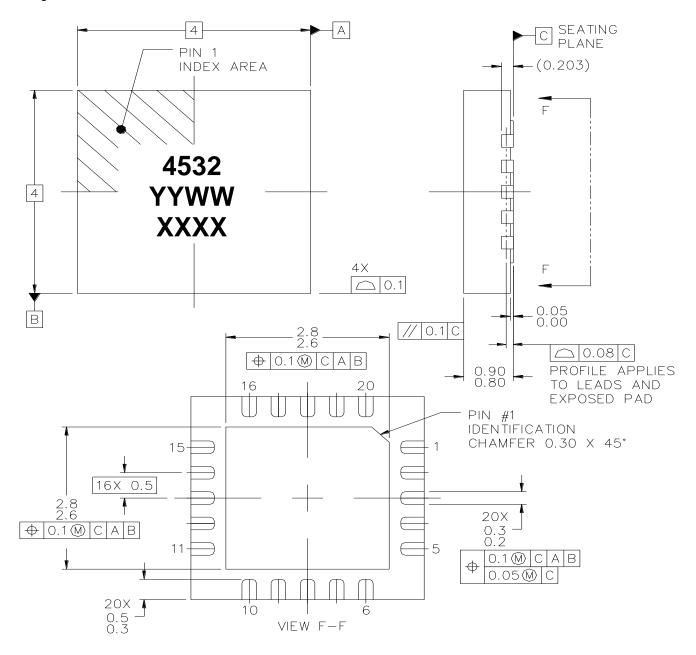
Pad No.	Label	Description
1, 3, 4, 5, 6, 10, 11, 13, 14, 20	N/C	No internal connection; must be grounded on PCB
2	RF IN	Input, matched to 50 ohms
7, 19	Vg	Gate voltage. Bias network is required; see Application Circuit on page 7 as an example. Can be biased from either pin.
8, 18	GND	Internal grounding; can be grounded or left open on PCB
12	RF OUT	Output, matched to 50 ohms
9, 17	Vd	Drain voltage. Bias network is required; see Application Circuit on page 7 as an example. Both pins must be biased.
15	Vdet	Detector diode output voltage. Varies with RF output power.
16	Vref	Reference diode output voltage.
21	GND	Backside Paddle. Multiple vias should be employed to minimize inductance and thermal resistance; see Mounting Configuration on page 11 for suggested footprint.

Evaluation Board (EVB) Layout Assembly

Note: PCB is a multilayer

- 1. All 4 metal thicknesses are 0.5 oz
- 2. Upper core 1 is Rogers 4003C
- 3. Microstrip line width = 0.0175"

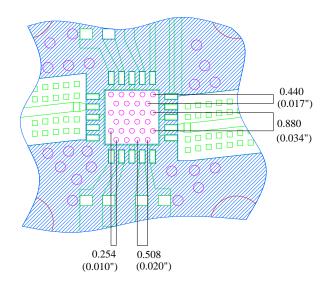
Bill of Material - TGA4532 Evaluation board


Reference Des.	Value	Description	Manuf.	Part Number
n/a	n/a	Printed Circuit Board	Qorvo	
C1, C2, C3, C4	100 pF	Cap, 0402, 50V, 5%, NPO	various	
C5, C6, C7	1 uF	Cap, 0603, 50V, 5%, COG	various	
R1	15 Ohms	Res, 0402, 1/16W, 5%, SMD	various	

Package Marking and Dimensions

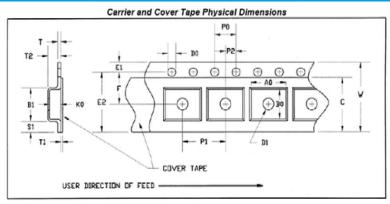
Marking: Part Number - TGA4532-SM

Vendor and Lot Code – "YY" is last two digits of manufacturing year, "WW" is the work week; "XXXX" is a generated number.



Notes:

This package is lead-free/RoHS-compliant with an embedded heat spreader, and the plating material on the leads is NiPdAu. It is compatible with both lead-free (maximum 260 °C reflow temperature) and tin-lead (maximum 245 °C reflow temperature) soldering processes.


PCB Mounting Pattern

Notes:

- 1. All dimensions are in millimeters (inches). Angles are in degrees.
- 2. Ground vias are critical for the proper performance of this device. Vias should have a final plated thru diameter of .2524 mm (.010").
- 3. A heatsink underneath the area of the PCB for the mounted device is recommended for proper thermal operation.
- The pad pattern shown has been developed and tested for optimized assembly at Qorvo. The PCB land pattern has been developed to
 accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is
 recommended.

Tape and Reel Information – Carrier and Cover Tape Dimensions

Feature	Measure	Symbol	Size (in)	Size (mm)
Ozvátka	Length	A0	0.171	4.35
	Width	B0	0.171	4.35
Cavity	Depth	K0	0.043	1.1
	Pitch	P1	0.315	8.0
Cantarlina Diataraa	Cavity to Perforation - Length Direction	P2	0.079	2.0
Centerline Distance	Cavity to Perforation - Width Direction	F	0.217	5.5
Cover Tape	Width	С	0.362	9.2
Carrier Tape	Width	W	0.472	12.0

Handling Precautions

Parameter	Rating	Standard	
ESD – Human Body Model (HBM)	Class 1A	JEDEC JESD22-A114	4
MSL Rating	Level 1	JEDEC/IPC J-STD-020	_

Caution! ESD-Sensitive Device

Solderability

Compatible with lead-free (260°C max. reflow temp.) soldering process.

Solder profiles available upon request. Use of no-clean solder to avoid washing after soldering is recommended.

Contact plating: NiAu

RoHS Compliance

This part is compliant with 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: <u>customer.support@gorvo.com</u>

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2016 @ Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549M88GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V A4011