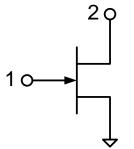

TGF2023-2-01

6 W, 32 V, DC to 18 GHz, Discrete Power GaN on SiC HEMT

Product Overview


The Qorvo TGF2023-2-01 is a discrete 1.25 mm GaN on SiC HEMT which operates from DC-18 GHz. The TGF2023-2-01 is designed using Qorvo's proven QGaN25 production process. This process features advanced field plate techniques to optimize microwave power and efficiency at high drain bias operating conditions.

The TGF2023-2-01 typically provides 37.7 dBm of saturated output power with power gain of 20.7 dB at 3 GHz. The maximum power added efficiency is 71.6 % which makes the TGF2023-2-01 appropriate for high efficiency applications.

Lead-free and RoHS compliant

Functional Block Diagram

Pad Configuration

Pad No.	Symbol
1	V _G / RF IN
2	V _D / RF OUT
Backside	Source / Ground

Key Features

- Frequency Range: DC 18 GHz
- Output Power (P_{3dB})¹: 38 dBm
- Maximum PAE¹: 71.6%
- Linear Gain¹: 18 dB
- Bias: V_D = 12 32 V, I_{DQ} = 25 125 mA
- Technology: TQGaN25 on SiC
- Chip Dimensions: 0.82 x 0.66 x 0.10 mm Note 1: @ 3 GHz

Applications

- Defense & Aerospace
- Broadband Wireless

Ordering Information

Part Number	Description
TGF2023-2-01	6 Watt GaN HEMT

TGF2023-2-01 6 W, 32 V, DC to 18 GHz, Discrete Power GaN on SiC HEMT

Absolute Maximum Ratings

Parameter	Rating
Drain to Gate Voltage (V _{DG})	100 V
Drain Voltage (V _D)	40 V
Gate Voltage Range (V _G)	-7 to 2 V
Drain Current (I _D)	1.438 A
Gate Current (I _G)	-1.25 to 3.5 mA
Power Dissipation, CW (P _D)	See graph on pg.4.
CW Input Power (P _{IN})	+31 dBm
Storage Temperature	−65 to 150°C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Drain Voltage Range (V _D)	+12	+28	+40	V
Drain Quiescent Current (IDQ)	-	62.5	-	mA
Gate Voltage, V _G ¹	-3.7	-2.8	-2.3	V
Gate Leakage: $V_D = +10 V$, $V_G = -3.7 V$	-1.25	_	-	mA

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions. Note:

1. To be adjusted to desired I_{DQ}

RF Characterization – Model Optimum Power Tune

Test conditions unless otherwise noted: $T = 25^{\circ}C$, Pulse (10% Duty Cycle, 100 μ s Width).

Parameter		Typical Value						Units	
Frequency (F)	3	5		6	8	3	1	0	GHz
Drain Voltage (V _D)	28	28	28	28	28	28	28	28	V
Bias Current (I _{DQ})	25	62.5	25	62.5	25	62.5	25	62.5	mA
Output P3dB (P _{3dB})	38	37.8	38.1	38.0	38.1	38.0	38.1	38.0	dBm
Drain Eff. @ P _{3dB} (DE _{3dB})	60.2	59.1	57.7	57.3	55.4	55.6	53	53.3	%
Gain @ P3dB (G _{3dB})	20	20.8	14.6	15.4	12.2	13	10.4	11.2	dB
Parallel Resistance (1) (Rp)	65.2	65.1	63.1	62.7	59.3	59.7	56.1	55.8	Ω·mm
Parallel Capacitance ⁽¹⁾ (C _p)	0.318	0.312	0.324	0.321	0.341	0.343	0.328	0.330	pF/mm
Load Reflection Coefficient $^{(2)}$ ($\Gamma_{L})$	0.19∠94°	0.19∠95°	0.36∠110°	0.35∠110°	0.46∠120°	0.47∠120°	0.52∠126°	0.52∠127°	

Notes:

1. Large signal equivalent output network (normalized).

2. Characteristic Impedance (Zo) = 50 Ω .

RF Characterization – Model Optimum Efficiency Tune

Test conditions unless otherwise noted: $T = 25^{\circ}C$, Pulse (10% Duty Cycle, 100 μ s Width).

Parameter		Typical Value						Units	
Frequency (F)	3	5		6	8	3	1	0	GHz
Drain Voltage (V _D)	28	28	28	28	28	28	28	28	V
Bias Current (IDQ)	25	62.5	25	62.5	25	62.5	25	62.5	mA
Output P3dB (P _{3dB})	36.8	36.7	37.0	37.0	37	37.1	37.1	37.1	dBm
Drain Eff. @ P _{3dB} (DE _{3dB})	65.6	64.3	63.3	62.5	60.5	60.1	57.3	57.4	%
Gain @ P3dB (G _{3dB})	21.6	22.4	15.9	16.6	13.3	14.1	11.4	12.2	dB
Parallel Resistance ⁽¹⁾ (R _p)	110	112	104	100	99.8	94.4	88.9	85.9	Ω·mm
Parallel Capacitance (1) (Cp)	0.398	0.384	0.394	0.390	0.394	0.390	0.384	0.386	pF/mm
Load Reflection Coefficient $^{(2)}$ ($\Gamma_{L})$	0.39∠64°	0.39∠62°	0.55∠97°	0.53∠97°	0.63∠110°	0.62∠111°	0.68∠120°	0.67∠121°	

Notes:

1. Large signal equivalent output network (normalized).

2. Characteristic Impedance (Zo) = 50Ω .

TGF2023-2-01 6 W, 32 V, DC to 18 GHz, Discrete Power GaN on SiC HEMT

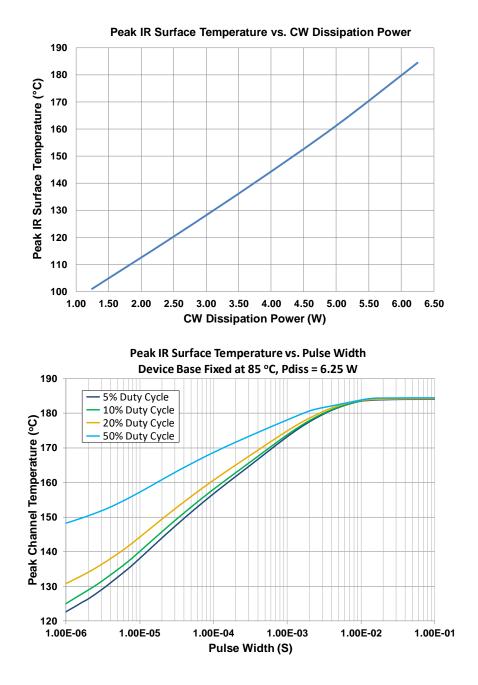
Thermal and Reliability Information - CW⁽¹⁾

Parameter	Test Conditions	Value	Units
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 1.25 W, Tbaseplate = 85°C	12.7	°C/W
Channel Temperature, TCH		101	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 2.5 W, Tbaseplate = 85°C	14.1	°C/W
Channel Temperature, T _{CH}		120	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 3.75 W, Tbaseplate = 85°C	14.7	°C/W
Channel Temperature, T _{CH}		140	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 5.00 W, Tbaseplate = 85°C	15.2	°C/W
Channel Temperature, T _{CH}		161	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 6.25 W, Tbaseplate = 85°C	15.9	°C/W
Channel Temperature, Тсн		184	°C

Notes:

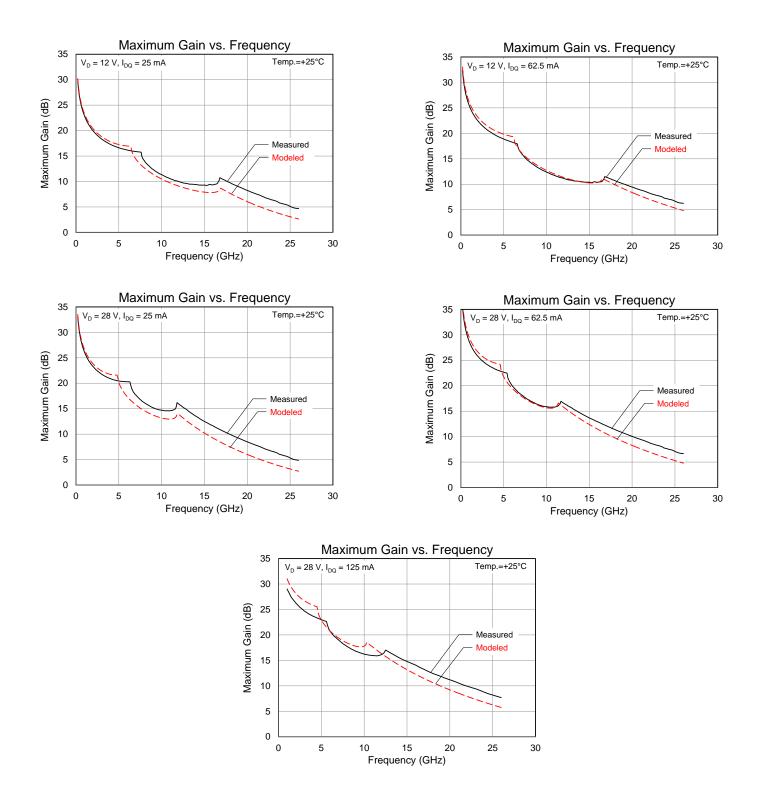
1. Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates

Thermal and Reliability Information - Pulsed ⁽¹⁾


Parameter	Test Conditions	Value	Units
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	$P_{DISS} = 6.25 W$, Tbaseplate = $85^{\circ}C$ Pulse Width = 100 uS	11.5	°C/W
Channel Temperature, T _{CH}	Duty Cycle = 5%	157	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 6.25 W, Tbaseplate = 85°C Pulse Width = 100 uS	11.7	°C/W
Channel Temperature, T _{CH}	Duty Cycle = 10%	158	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	$P_{DISS} = 6.25 \text{ W}$, Tbaseplate = $85^{\circ}C$ Pulse Width = 100 uS	12.1	°C/W
Channel Temperature, T _{CH}	Duty Cycle = 20%	161	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	$P_{DISS} = 6.25 \text{ W}$, Tbaseplate = $85^{\circ}C$ Pulse Width = 100 uS	13.8	°C/W
Channel Temperature, Тсн	Duty Cycle = 50%	171	°C

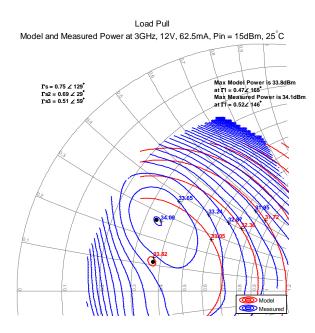
Notes:

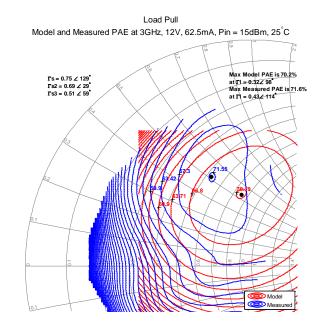
1. Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates

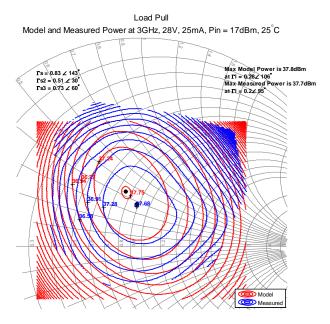

TGF2023-2-01 6 W, 32 V, DC to 18 GHz, Discrete Power GaN on SiC HEMT

Maximum Channel Temperature

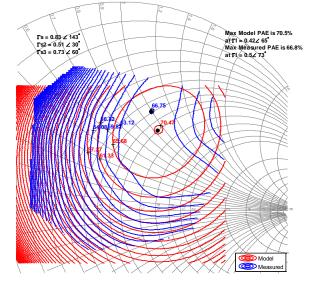
TGF2023-2-01 6 W, 32 V, DC to 18 GHz, Discrete Power GaN on SiC HEMT

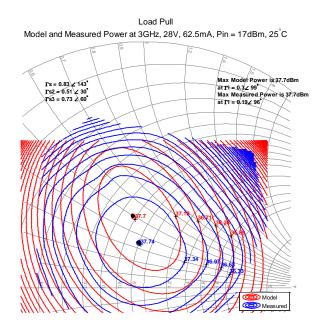

Model Maximum Gain Performance

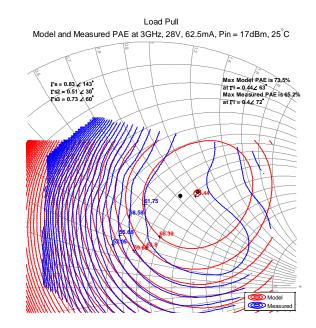



TGF2023-2-01 6 W, 32 V, DC to 18 GHz, Discrete Power GaN on SiC HEMT

Model Load Pull Contours


Load pull signal: Pulse (10% Duty Cycle, 100 µs Width). Bond wires included. Measured data provided by Modelithics.

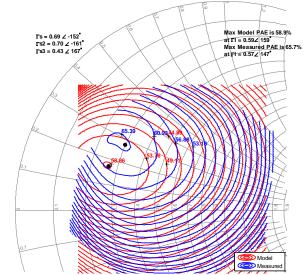

Load Pull Model and Measured PAE at 3GHz, 28V, 25mA, Pin = 17dBm, $25^{\circ}C$



TGF2023-2-01 6 W, 32 V, DC to 18 GHz, Discrete Power GaN on SiC HEMT

Model Load Pull Contours

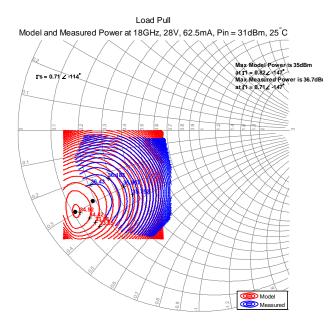
Load pull signal: Pulse (10% Duty Cycle, 100 µs Width). Bond wires included. Measured data provided by Modelithics.

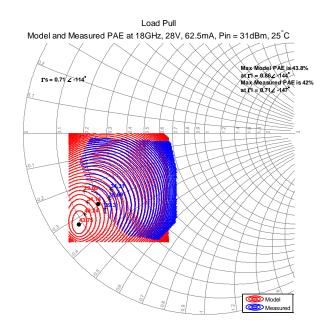


Model and Measured Power at 10GHz, 28V, 62.5mA, Pin = 27dBm, 25 °C

Load Pull

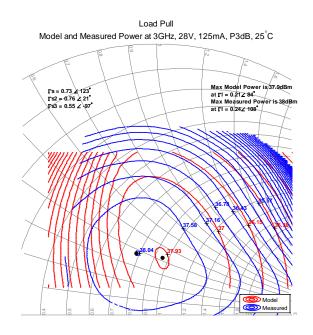
Load Pull Model and Measured PAE at 10GHz, 28V, 62.5mA, Pin = 27dBm, 25 $^\circ \rm C$

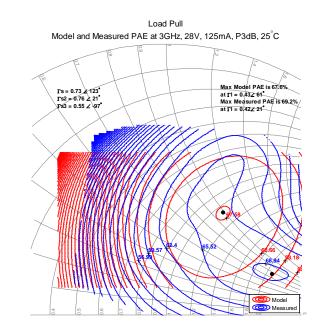

.

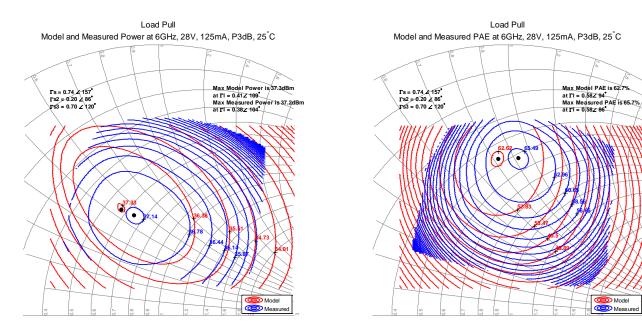

Model
Measure

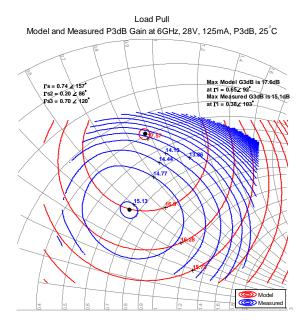
TGF2023-2-01 6 W, 32 V, DC to 18 GHz, Discrete Power GaN on SiC HEMT

Model Load Pull Contours

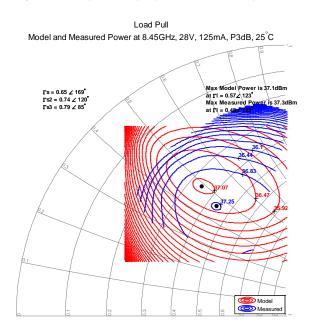

Load pull signal: Pulse (10% Duty Cycle, 100 µs Width). Bond wires included. Measured data provided by Modelithics.

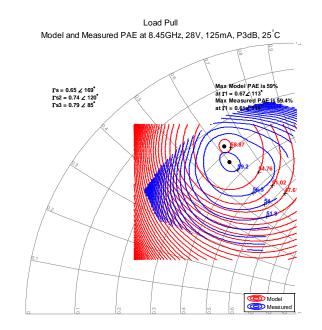


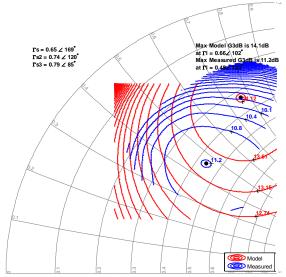



Model Load Pull Contours

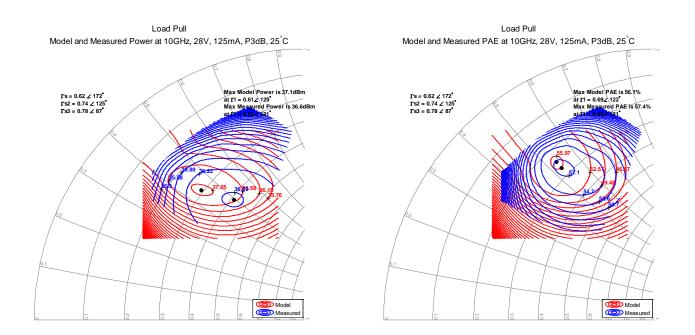
Model Load Pull Contours

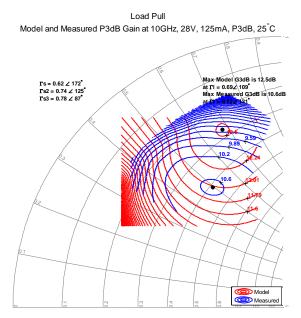


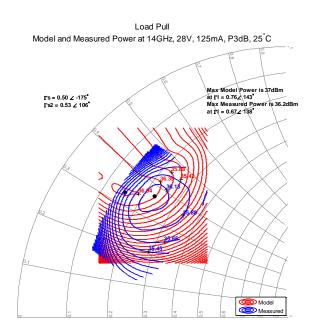


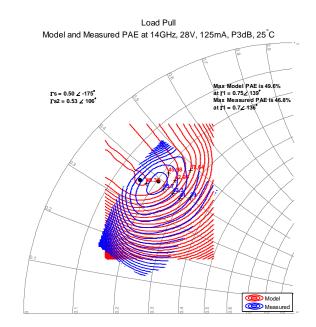

TGF2023-2-01 6 W, 32 V, DC to 18 GHz, Discrete Power GaN on SiC HEMT

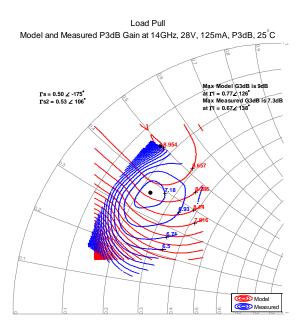
Model Load Pull Contours



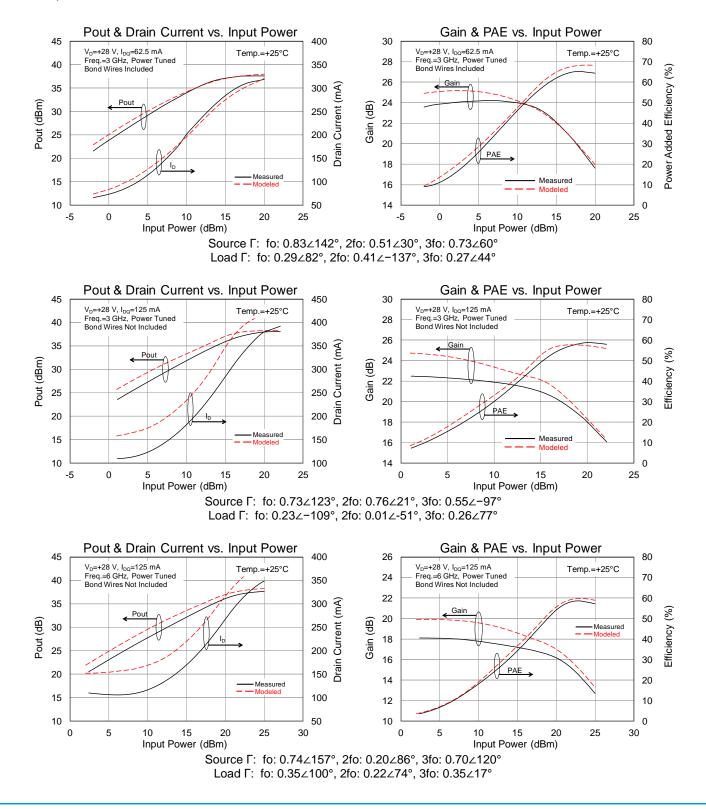

Load Pull Model and Measured P3dB Gain at 8.45GHz, 28V, 125mA, P3dB, 25 $^\circ\text{C}$

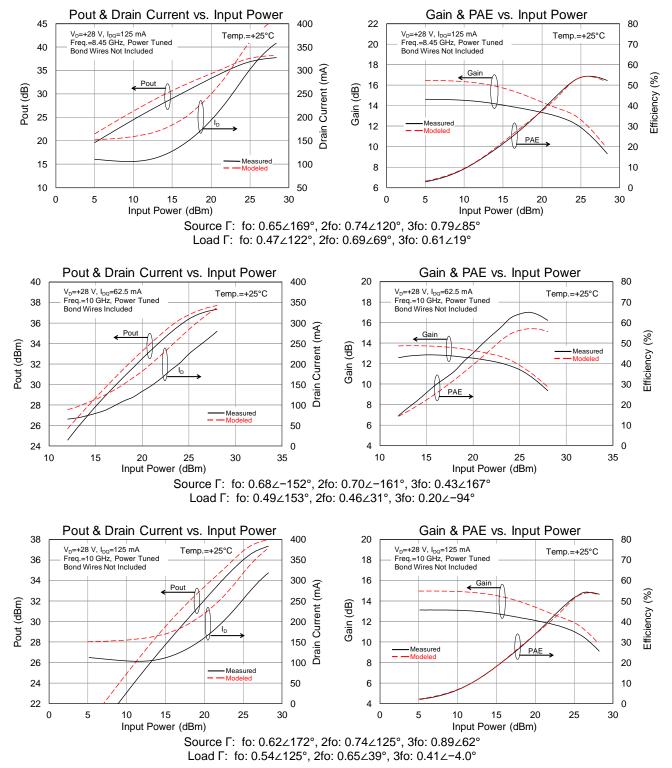



Model Load Pull Contours

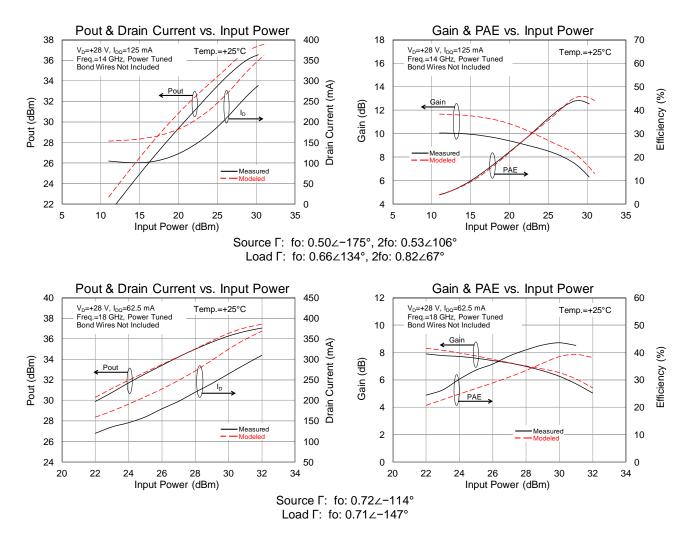



Model Load Pull Contours

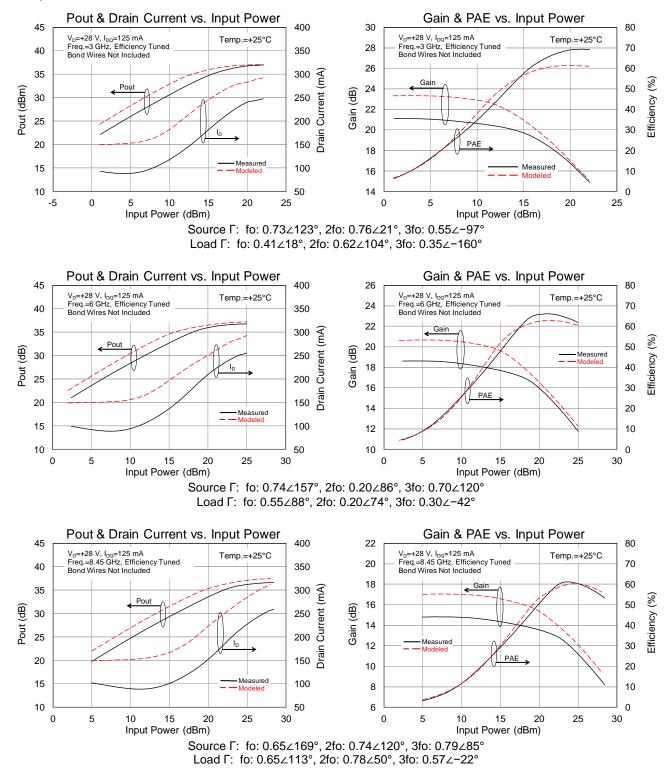



Measured Power Tuned Data

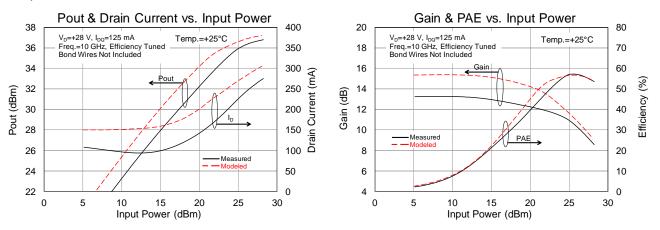
Measured Power Tuned Data



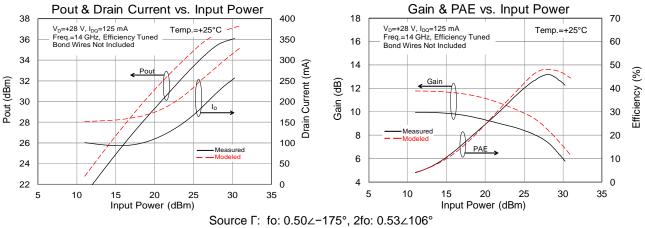
Measured Power Tuned Data



Measured Power Tuned Data

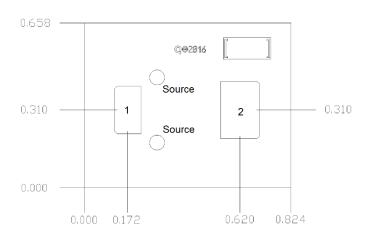


Measured Efficiency Tuned Data



Measured Efficiency Tuned Data

Modelithics provided measured data at 25mA and 62.5mA bias currents.


Source Γ: fo: 0.62∠172°, 2fo: 0.74∠125°, 3fo: 0.89∠62° Load Γ: fo: 0.68∠120°, 2fo: 0.69∠34°, 3fo: 0.41∠−17°

Load Γ: fo: 0.73∠134°, 2fo: 0.84∠71°

Mechanical Drawing

Bond Pads

Pad No.	Description	Dimensions
1	Gate	0.154 x 0.115
2	Drain	0.154 x 0.230
Die Backside	Source / Ground	0.662 x 0.824

- 1. Units: millimeters
- 2. Thickness: 0.100 mm
- 3. Die xy size tolerance: ± 0.050 mm

Model

A model is available for download from Modelithics (at <u>http://www.modelithics.com/mvp/Triquint&tab=3</u>) by approved Qorvo customers. The model is compatible with the industry's most popular design software including Agilent ADS and National Instruments/AWR applications. Once on the Modelithics web page, the user will need to register for a free license before being granted the download.

Assembly Notes

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment (i.e. epoxy) not recommended.

Reflow process assembly notes:

- Use AuSn (80/20) solder and limit exposure to temperatures above 300°C to 3-4 minutes, maximum.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- Do not use any kind of flux.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Interconnect process assembly notes:

- Ball bonding is the preferred interconnect technique, except where noted on the assembly diagram.
- Force, time, and ultrasonics are critical bonding parameters.
- Aluminum wire should not be used.
- Devices with small pad sizes should be bonded with 0.0007-inch wire.

Disclaimer

GaN/SiC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Bias Procedure

Bias-Up Procedure	Bias-Down Procedure
1. Set V_G to -5 V.	1. Turn off RF signal.
2. Apply +28 V to V_D .	2. Turn off V _D .
3. Slowly adjust V _G until I _D is set to 125 mA.	3. Wait two (2) seconds to allow drain capacitor to discharge.
4. Apply RF.	4. Turn off V _G .
	•

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	TBD	ANSI/ESDA/JEDEC Standard JS-001	
ESD-Charged Device Model (CDM)	N/A	ANSI/ESDA/JEDEC Standard JS-002	
MSL-Moisture Sensitivity Level	N/A	IPC/JEDEC Standard J-STD-020	Caution!
			ESD-Sensitive Device

Solderability

Compatible with gold/tin (320°C maximum reflow temperature) soldering processes.

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>

Email: customer.support@gorvo.com

Tel: 1-844-890-8163

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

23 of 23

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF JFET Transistors category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

CE3514M4 CE3514M4-C2 CE3520K3-C1 CE3521M4 CE3521M4-C2 CE3512K2-C1 CE3520K3 CG2H80030D-GP4 TGF2023-2-02 NPT1004D MAGX-011086 NPT25015D JANTXV2N4858 MMBFJ211 NPT2021 NPTB00025B 2SK3557-6-TB-E J211_D74Z NPTB00004A QPD0020 QPD1006 QPD1016 QPD1025L QPD1029L QPD1881L T2G6001528-Q3 SKY65050-372LF TGF2965-SM QPD1009 QPD1010 J304 CGH27015F CGH55015F1 CMPA801B030F GTVA262711FA-V2-R0 GTVA262701FA-V2-R0 CGH40006S CGH40010F CGH40025F CGH40045F CGH40120F CGH55015F2 CGH60008D CGH60030D CGHV14500F CGHV1F006S CGHV1J006D CGHV27030S CGHV27060MP CGHV40030F