TGF2929-HM

100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

General Description

The Qorvo TGF2929-HM is a 100 W (P_{3dB}) discrete GaN on SiC HEMT which operates from DC to 3.5 GHz. The device is constructed with Qorvo's proven QGaN25HV process, which features advanced field plate techniques to optimize power and efficiency at high drain bias operating conditions. This optimization can potentially lower system costs in terms of fewer amplifier line-ups and lower thermal management costs.

Hermetic package

Lead-free and ROHS compliant

Evaluation boards are available upon request.

Functional Block Diagram

Product Features

- Frequency: DC to 3.5 GHz
- Output Power (P3dB)¹: 132 W
- Linear Gain¹: 17.4 dB
- Typical DEFF (P3dB)¹: 74.9%
- Operating Voltage: 28 V
- Low thermal resistance package
- CW and Pulse capable Note 1: @ 2 GHz

Applications

- Space radar
- Satcomm
- Military radar
- Civilian radar
- Land mobile and military radio communications
- Test instrumenation
- Wideband or narrowband amplifiers
- Jammers

Ordering info

Part No.	Description
TGF2929-HM	DC – 3.5 GHz packaged part
TGF2929-HM EVB01	3.1 – 3.5 GHz EVB

TGF2929-HM

100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Absolute Maximum Ratings

Parameter	Rating	Units
Breakdown Voltage,BV _{DG}	+145	V
Gate Voltage Range, V _G	-7 to +2	V
Drain Current	12	А
Power Dissipation, CW (P _{DISS})	See page 4.	W
RF Input Power, CW, T=25 °C	+42	dBm
Storage Temperature	-65 to +150	°C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min	Тур	Мах	Units
Drain Voltage Range, V _D	+12	+28	+50	V
Drain Bias Current, IDQ	-	260	_	mA
Gate Voltage, V _G ¹	_	-2.7	_	V

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions. Notes:

1. To be adjusted to desired I_{DQ}

Electrical Specifications

Parameter	Conditions	Min	Тур	Max	Units
Gate Leakage	$V_D = +10, V_G = -3.8$	-31.7			mA

TGF2929-HM

100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Pulsed Characterization – Load Pull Performance – Power Tuned¹

Parameters		Туріса	l Values		Unit
Frequency, F	1	2	3	3.5	GHz
Linear Gain, G _{LIN}	21.7	17.4	14.7	15.6	dB
Output Power at 3dB compression point, P _{3dB}	50.9	51.2	50.9	50.8	dBm
Drain Efficiency at 3dB compression point, DEFF _{3dB}	69.4	68.1	59.7	58.5	%
Gain at 3dB compression point	18.7	14.4	11.7	12.6	dB

Notes:

1. $V_D = +28 V$, $I_D = 260 mA$, Temp = +25 °C, Pulse Width = 100 uS, Duty Cycle = 20%

Pulsed Characterization – Load Pull Performance – Efficiency Tuned¹

Parameters	Typical Values				Unit
Frequency	1	2	3	3.5	GHz
Linear Gain, GLIN	23.3	18.6	16.0	17	dB
Output Power at 3dB compression point, P _{3dB}	50.1	49.5	49.9	49.1	dBm
Drain Efficiency at 3dB compression point, DEFF _{3dB}	79.2	74.9	67.4	63.1	%
Gain at 3dB compression point, G_{3dB}	20.3	15.6	13.0	14	dB

Notes:

1. V_D = +28 V, I_D = 260 mA, Temp = +25 °C, Pulse Width = 100 uS, Duty Cycle = 20%

RF Characterization – 3.1 – 3.5 GHz EVB Performance At 3.3 GHz¹

Parameter	Min	Тур	Max	Units
Linear Gain, GLIN	_	13.9	_	dB
Output Power at 3dB compression point, P _{3dB}	-	50.5	-	dBm
Power-Added-Efficiency at 3dB compression point, PAE _{3dB}	-	54	_	%
Gain at 3dB compression point, G _{3dB}	_	10.9	_	dB

Notes:

1. $V_D = +28 V$, $I_D = 260 mA$, Temp = +25 °C, Pulse Width = 100 uS, Duty Cycle = 20%

RF Characterization – Mismatch Ruggedness at 3.3 GHz

Symbol	Parameter	dB Compression	Typical
VSWR	Impedance Mismatch Ruggedness	3	10:1
Test conditions unless otherwise noted: $T_A = 25 ^{\circ}C$. $V_D = 28 ^{\circ}V$. $I_{DO} = 260 ^{\circ}mA$. Pulse Width = 100 uS. Duty Cycle = 20%.			

Test conditions unless otherwise noted: $T_A = 25$ °C, $V_D = 28$ V, $I_{DQ} = 260$ mA, Pulse Width = 100 uS, Duty Cycle = 20%, Driving input power is determined at pulsed compression under matched condition at EVB output connector.

TGF2929-HM

100W, 28V, DC - 3.5 GHz, GaN RF Power Transistor

Thermal and Reliability Information – Pulsed

Thermal and Reliability Information – CW

TGF2929-HM

100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Thermal and Reliability Information – CW

Parameter	Simulation Conditions	Value	Units
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 28.8 W, T _{baseplate} = 85 °C	1.08	°C/W
Channel Temperature (T _{CH})		116	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 57.6 W, T _{baseplate} = 85 °C	1.15	°C/W
Channel Temperature (T _{CH})		151	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 86.4 W, T _{baseplate} = 85 °C	1.20	°C/W
Channel Temperature (T _{CH})		189	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 115.2 W, T _{baseplate} = 85 °C	1.28	°C/W
Channel Temperature (T _{CH})		232	°C

Note:

1. Thermal resistance measured to bottom of package.

2. Refer to the following document: GaN Device Channel Temperature. Thermal Resistance, and Reliability Estimates

Thermal and Reliability Information – Pulsed

Parameter	Simulation Conditions	Value	Units
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 100 W, T _{baseplate} = 85 °C Pulse Width = 1 mS	0.73	°C/W
Channel Temperature (Тсн)	Duty Cycle = 5%	158	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 100 W, T _{baseplate} = 85 °C Pulse Width = 1 mS	0.75	°C/W
Channel Temperature (T _{CH})	Duty Cycle = 10%	160	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 100 W, T _{baseplate} = 85 °C Pulse Width = 1 mS	0.78	°C/W
Channel Temperature (Тсн)	Duty Cycle = 20%	163	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 100 W, T _{baseplate} = 85 °C Pulse Width = 1 mS	0.88	°C/W
Channel Temperature (T _{CH})	Duty Cycle = 50%	173	°C

Note:

1. Thermal resistance measured to bottom of package.

2. Refer to the following document: GaN Device Channel Temperature. Thermal Resistance, and Reliability Estimates

TGF2929-HM 100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Load Pull Smith Charts^{1, 2, 3}

- 1. 28 V, 260 mA, Pulsed signal with 100 uS pulse width and 20 % duty cycle. Performance is at indicated input power.
- 2. See page 15 for load pull and source pull reference planes. 6-Ω load pull TRL fixtures are built with 20-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

TGF2929-HM 100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Load Pull Smith Charts^{1, 2, 3}

- 1. 28 V, 260 mA, Pulsed signal with 100 uS pulse width and 20 % duty cycle. Performance is at indicated input power.
- 2. See page 15 for load pull and source pull reference planes. 6-Ω load pull TRL fixtures are built with 20-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

3dB Compression Referenced to Peak Gain

TGF2929-HM 100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Load Pull Smith Charts^{1, 2, 3}

- 1. 28 V, 260 mA, Pulsed signal with 100 uS pulse width and 20 % duty cycle. Performance is at indicated input power.
- 2. See page 15 for load pull and source pull reference planes. 6-Ω load pull TRL fixtures are built with 20-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

3dB Compression Referenced to Peak Gain

TGF2929-HM 100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Load Pull Smith Charts^{1, 2, 3}

- 1. 28 V, 260 mA, Pulsed signal with 100 uS pulse width and 20 % duty cycle. Performance is at indicated input power.
- 2. See page 15 for load pull and source pull reference planes. 6-Ω load pull TRL fixtures are built with 20-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

3dB Compression Referenced to Peak Gain

TGF2929-HM

100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Typical Performance – Load Pull Drive-up^{1, 2}

- 1. Pulsed signal with 100 uS pulse width and 20 % duty cycle, Vd = 28 V, Idq = 260 mA
- 2. See page 15 for load pull and source pull reference planes where the performance was measured.

TGF2929-HM

100W, 28V, DC - 3.5 GHz, GaN RF Power Transistor

Typical Performance – Load Pull Drive-up^{1, 2}

- 1. Pulsed signal with 100 uS pulse width and 20 % duty cycle, Vd = 28 V, Idq = 260 mA
- 2. See page 15 for load pull and source pull reference planes where the performance was measured.

TGF2929-HM

100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Power Driveup Performance Over Temperatures Of 3.1 – 3.5 GHz EVB¹

Notes:

1. Vd = 28 V, Idq = 260 mA, Pulse Width = 100 uS, Duty Cycle = 20 %

TGF2929-HM

100W, 28V, DC - 3.5 GHz, GaN RF Power Transistor

Power Driveup Performance At 25 °C Of 3.1 – 3.5 GHz EVB¹

Notes:

1. Vd = 28 V, Idq = 260 mA, Pulse Width = 100 uS, Duty Cycle = 20 %

TGF2929-HM

100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Pin Layout ¹

Notes:

1. The TGF2929-HM will be marked with the "TGF2929HM" designator and a lot code marked below the part designator. The "YY" represents the last two digits of the calendar year the part was manufactured, the "WW" is the work week of the assembly lot start, the "MXXX" is the production lot number, and the "ZZZ" is an auto-generated serial number.

Pin Description

Pin	Symbol	Description
1	VD / RF OUT	Gate voltage / RF Input
2	VG / RF IN	Drain voltage / RF Output
3	Flange	Source to be connected to ground

TGF2929-HM

100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Mechanical Drawing^{1, 2, 3, 4, 5}

Notes:

3.

- 1. All dimensions are in inches. Otherwise noted, the tolerance is ±0.005 inches.
- 2. Material:
 - Package base: Metal
 - Ringframe: ceramic
 - Package lid: ceramic
 - Package exposed metal base and leads are gold plated.
- 4. Lid is attached to package with solder.
- 5. Parts meet industry NI360 footprint.

TGF2929-HM

100W, 28V, DC - 3.5 GHz, GaN RF Power Transistor

Schematic Of 3.1 – 3.5 GHz EVB

Bias-up Procedure	Bias-down Procedure
1. Set V _G to -4 V.	1. Turn off RF signal.
2. Set I_D current limit to 300 mA.	2. Turn off V_D
3. Apply 28 V V _D .	3. Wait 2 seconds to allow drain capacitor to discharge
4. Slowly adjust V_G until I_D is set to 260 mA.	4. Turn off V _G
5. Set I_D current limit to 7 A	
6. Apply RF.	

TGF2929-HM

100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

PCB Layout Of 3.1 – 3.5 GHz EVB

Board material is RO4350B 0.02" thickness with 1 oz copper cladding.

Bill Of material Of 3.1 – 3.5 GHz EVB

Ref Des	Value	Description	Manufacturer	Part Number
R1	1 kΩ	0603 Resistor	Vishay/Dale	CRCW0603102RJNEA
C1, C2	5.6 pF	RF NPO 250VDC ± 0.1 pF Capacitor	ATC	600S5R6BT
C3	1.2 pF	RF NPO 250VDC ± 0.1 pF Capacitor	ATC	600S1R2BT
L1	22 nH	Inductor	Coilcraft	0805CS-220X-LB
R2	20 Ω	0603 Resistor	Vishay/Dale	CRCW060320R0JNEA
C4	10 uF	Ceramic Capacitor	Murata	C1632X5R0J106M130AC
L2	12.5 nH	Inductor	Coilcraft	A04T_L
C5	2400 pF	Ceramic Capacitor	Murata	C08BL242X-5UN-X0T
C6	1000 pF	Ceramic Capacitor	ATC	800B102JT50XT
C7	220 uF	Electrolytic Capacitor	United Chemi-Con	EMVY500ADA221MJA0G
C8	15 pF	RF NPO 250VDC 5% Capacitor	ATC	600S150JT250XT

TGF2929-HM

100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Recommended Solder Temperature Profile

TGF2929-HM

100W, 28V, DC – 3.5 GHz, GaN RF Power Transistor

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 1B	ANSI/ESDA/JEDEC JS-001	Caution!
ESD-Charged Device Model (CDM)	Class C3	ANSI/ESDA/JEDEC JS-002	ESD-Sensitive Device

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Package lead plating is NiAu. Au thickness is 60 microinches.

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: <u>customer.support@gorvo.com</u>

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2020 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF JFET Transistors category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

CE3514M4 CE3514M4-C2 CE3520K3-C1 CE3521M4 CE3521M4-C2 CE3512K2-C1 CE3520K3 CG2H80030D-GP4 TGF2023-2-02 NPT1004D MAGX-011086 NPT25015D JANTXV2N4858 MMBFJ211 NPT2021 NPTB00025B 2SK3557-6-TB-E J211_D74Z NPTB00004A QPD0020 QPD1006 QPD1016 QPD1025L QPD1029L QPD1881L T2G6001528-Q3 SKY65050-372LF TGF2965-SM QPD1009 QPD1010 J304 CGH27015F CGH55015F1 CMPA801B030F GTVA262711FA-V2-R0 GTVA262701FA-V2-R0 CGH40006S CGH40010F CGH40025F CGH40045F CGH40120F CGH55015F2 CGH60008D CGH60030D CGHV14500F CGHV1F006S CGHV1J006D CGHV27030S CGHV27060MP CGHV40030F