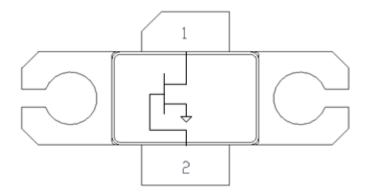


General Description


The Qorvo TGF2929-HM is a 100 W (P_{3dB}) discrete GaN on SiC HEMT which operates from DC to 3.5 GHz. The device is constructed with Qorvo's proven QGaN25HV process, which features advanced field plate techniques to optimize power and efficiency at high drain bias operating conditions. This optimization can potentially lower system costs in terms of fewer amplifier line-ups and lower thermal management costs.

Hermetic package

Lead-free and ROHS compliant

Evaluation boards are available upon request.

Product Features

• Frequency: DC to 3.5 GHz

• Output Power (P3dB)1: 132 W

• Linear Gain¹: 17.4 dB

Typical DEFF (P3dB)¹: 74.9%

• Operating Voltage: 28 V

• Low thermal resistance package

CW and Pulse capable

Note 1: @ 2 GHz

Applications

- · Space radar
- Satcomm
- · Military radar
- · Civilian radar
- · Land mobile and military radio communications
- Test instrumenation
- · Wideband or narrowband amplifiers
- Jammers

Ordering info

Part No.	Description	
TGF2929-HM	DC – 3.5 GHz packaged part	
TGF2929-HM EVB01	3.1 – 3.5 GHz EVB	

Absolute Maximum Ratings

Parameter	Rating	Units
Breakdown Voltage,BV _{DG}	+145	V
Gate Voltage Range, V _G	-7 to +2	V
Drain Current	12	Α
Power Dissipation, CW (PDISS)	See page 4.	W
RF Input Power, CW, T=25 °C	+42	dBm
Storage Temperature	−65 to +150	°C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Drain Voltage Range, V _D	+12	+28	+50	V
Drain Bias Current, IDQ	_	260	_	mA
Gate Voltage, V _G ¹	_	-2.7	_	V

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Notes:

1. To be adjusted to desired I_{DQ}

Electrical Specifications

Parameter	Conditions	Min	Тур	Max	Units
Gate Leakage	$V_D = +10, V_G = -3.8$	-31.7			mA

Pulsed Characterization - Load Pull Performance - Power Tuned¹

Parameters		Typica	l Values		Unit
Frequency, F	1	2	3	3.5	GHz
Linear Gain, G _{LIN}	21.7	17.4	14.7	15.6	dB
Output Power at 3dB compression point, P _{3dB}	50.9	51.2	50.9	50.8	dBm
Drain Efficiency at 3dB compression point, DEFF _{3dB}	69.4	68.1	59.7	58.5	%
Gain at 3dB compression point	18.7	14.4	11.7	12.6	dB

Notes:

Pulsed Characterization - Load Pull Performance - Efficiency Tuned¹

Parameters	Typical Values				Unit
Frequency	1	2	3	3.5	GHz
Linear Gain, G _{LIN}	23.3	18.6	16.0	17	dB
Output Power at 3dB compression point, P _{3dB}	50.1	49.5	49.9	49.1	dBm
Drain Efficiency at 3dB compression point, DEFF _{3dB}	79.2	74.9	67.4	63.1	%
Gain at 3dB compression point, G _{3dB}	20.3	15.6	13.0	14	dB

Notes:

RF Characterization – 3.1 – 3.5 GHz EVB Performance At 3.3 GHz¹

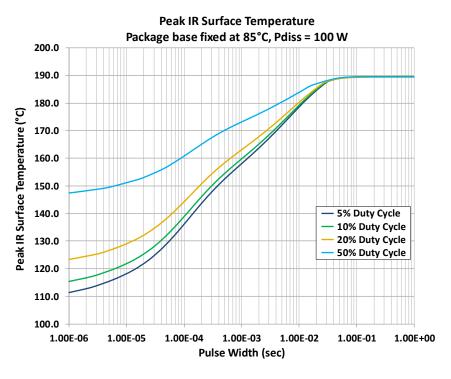
Parameter	Min	Тур	Max	Units
Linear Gain, G _{LIN}	_	13.9	_	dB
Output Power at 3dB compression point, P _{3dB}	_	50.5	_	dBm
Power-Added-Efficiency at 3dB compression point, PAE _{3dB}	_	54	_	%
Gain at 3dB compression point, G _{3dB}	_	10.9	_	dB

Notes:

RF Characterization - Mismatch Ruggedness at 3.3 GHz

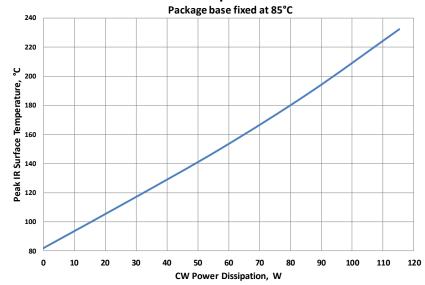
Symbol	Parameter	dB Compression	Typical
VSWR	Impedance Mismatch Ruggedness	3	10:1

Test conditions unless otherwise noted: $T_A = 25$ °C, $V_D = 28$ V, $I_{DQ} = 260$ mA, Pulse Width = 100 uS, Duty Cycle = 20%, Driving input power is determined at pulsed compression under matched condition at EVB output connector.


^{1.} $V_D = +28 \text{ V}$, $I_D = 260 \text{ mA}$, Temp = +25 °C, Pulse Width = 100 uS, Duty Cycle = 20%

^{1.} $V_D = +28 \text{ V}$, $I_D = 260 \text{ mA}$, Temp = +25 °C, Pulse Width = 100 uS, Duty Cycle = 20%

^{1.} $V_D = +28 \text{ V}$, $I_D = 260 \text{ mA}$, Temp = +25 °C, Pulse Width = 100 uS, Duty Cycle = 20%



Thermal and Reliability Information - Pulsed

Thermal and Reliability Information - CW

Peak IR SurfaceTemperature vs. CW Power

Thermal and Reliability Information - CW

Parameter	Simulation Conditions	Value	Units
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ _{JC})	P _{DISS} = 28.8 W, T _{baseplate} = 85 °C	1.08	°C/W
Channel Temperature (T _{CH})		116	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ _{JC})	P _{DISS} = 57.6 W, T _{baseplate} = 85 °C	1.15	°C/W
Channel Temperature (T _{CH})		151	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ _{JC})	P _{DISS} = 86.4 W, T _{baseplate} = 85 °C	1.20	°C/W
Channel Temperature (T _{CH})		189	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ _{JC})	P _{DISS} = 115.2 W, T _{baseplate} = 85 °C	1.28	°C/W
Channel Temperature (T _{CH})		232	°C

Note:

Thermal and Reliability Information - Pulsed

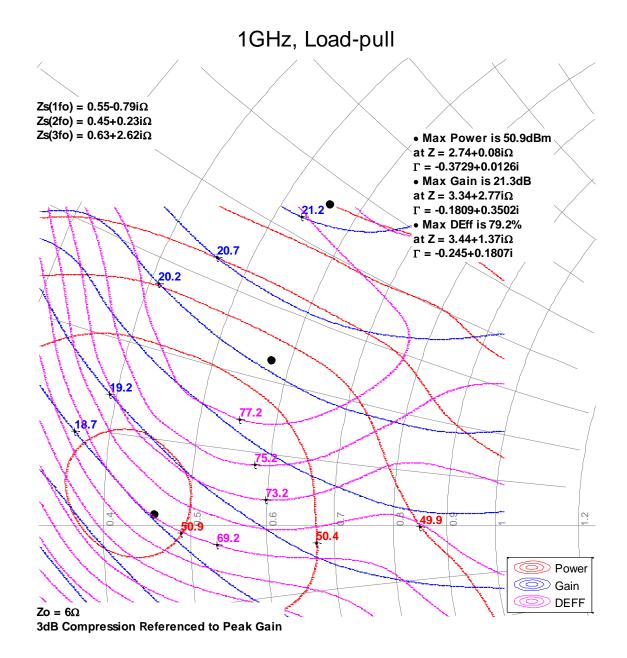
Parameter	Simulation Conditions	Value	Units
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ _{JC})	P _{DISS} = 100 W, T _{baseplate} = 85 °C Pulse Width = 1 mS	0.73	°C/W
Channel Temperature (T _{CH})	Duty Cycle = 5%	158	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ _{JC})	P _{DISS} = 100 W, T _{baseplate} = 85 °C Pulse Width = 1 mS	0.75	°C/W
Channel Temperature (T _{CH})	Duty Cycle = 10%	160	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ _{JC})	P _{DISS} = 100 W, T _{baseplate} = 85 °C Pulse Width = 1 mS	0.78	°C/W
Channel Temperature (T _{CH})	Duty Cycle = 20%	163	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ _{JC})	P _{DISS} = 100 W, T _{baseplate} = 85 °C Pulse Width = 1 mS	0.88	°C/W
Channel Temperature (T _{CH})	Duty Cycle = 50%	173	°C

^{1.}

Thermal resistance measured to bottom of package.

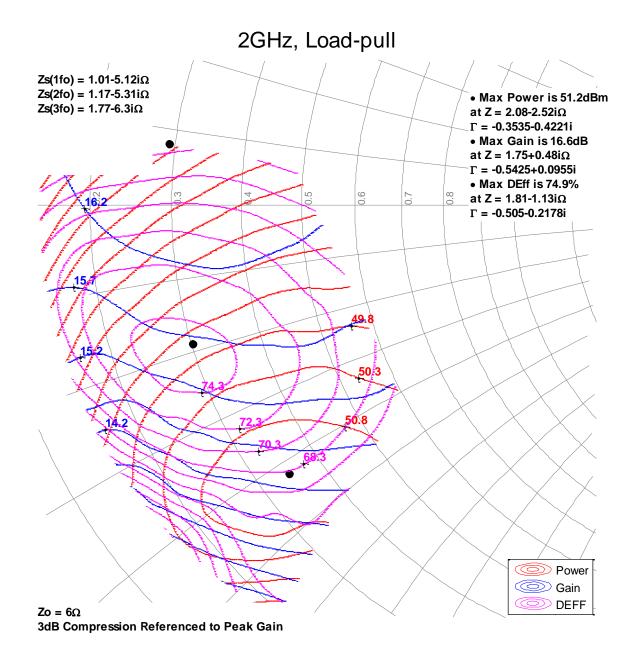
Refer to the following document: GaN Device Channel Temperature. Thermal Resistance, and Reliability Estimates

Thermal resistance measured to bottom of package.


Refer to the following document: GaN Device Channel Temperature. Thermal Resistance, and Reliability Estimates

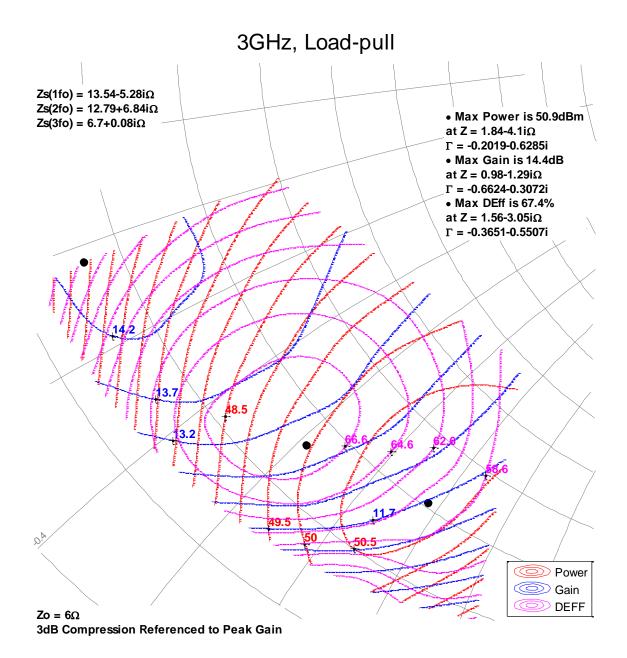
Load Pull Smith Charts^{1, 2, 3}

- 1. 28 V, 260 mA, Pulsed signal with 100 uS pulse width and 20 % duty cycle. Performance is at indicated input power.
- 2. See page 15 for load pull and source pull reference planes. 6-Ω load pull TRL fixtures are built with 20-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

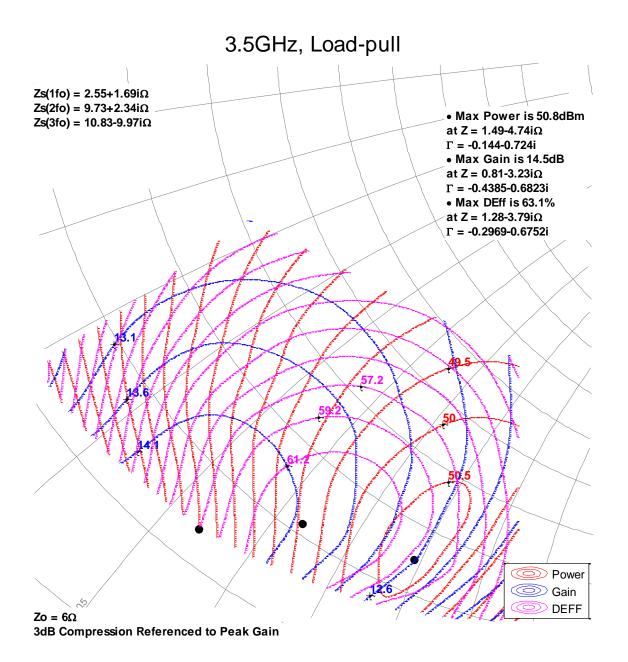


Load Pull Smith Charts^{1, 2, 3}

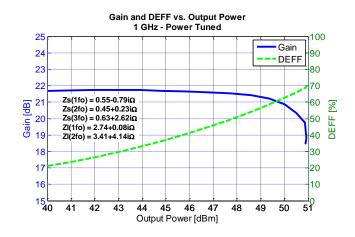
- 1. 28 V, 260 mA, Pulsed signal with 100 uS pulse width and 20 % duty cycle. Performance is at indicated input power.
- 2. See page 15 for load pull and source pull reference planes. 6-Ω load pull TRL fixtures are built with 20-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

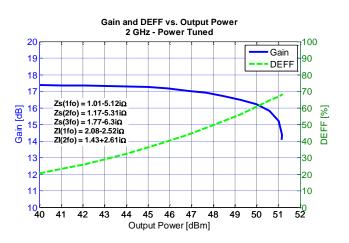


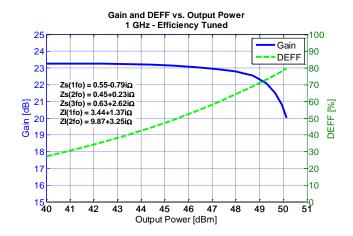
Load Pull Smith Charts^{1, 2, 3}

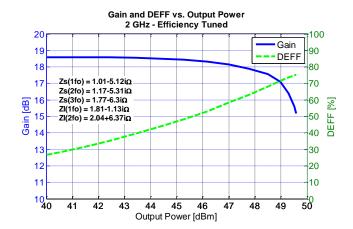

- 1. 28 V, 260 mA, Pulsed signal with 100 uS pulse width and 20 % duty cycle. Performance is at indicated input power.
- 2. See page 15 for load pull and source pull reference planes. 6-Ω load pull TRL fixtures are built with 20-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

Load Pull Smith Charts^{1, 2, 3}

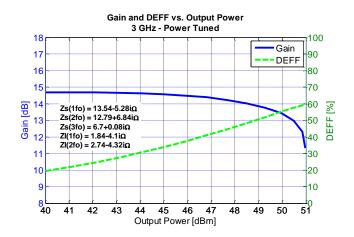

- 1. 28 V, 260 mA, Pulsed signal with 100 uS pulse width and 20 % duty cycle. Performance is at indicated input power.
- 2. See page 15 for load pull and source pull reference planes. 6-Ω load pull TRL fixtures are built with 20-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.

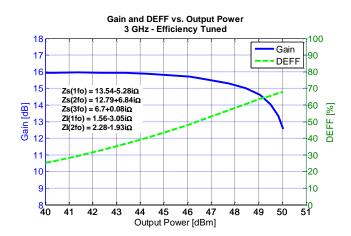


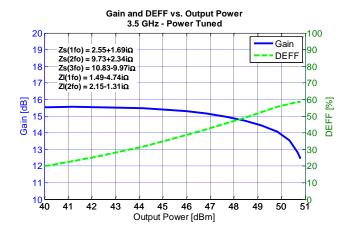


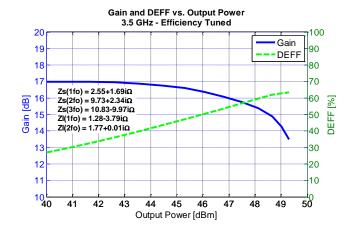

Typical Performance – Load Pull Drive-up^{1, 2}

- 1. Pulsed signal with 100 uS pulse width and 20 % duty cycle, Vd = 28 V, Idq = 260 mA
- 2. See page 15 for load pull and source pull reference planes where the performance was measured.

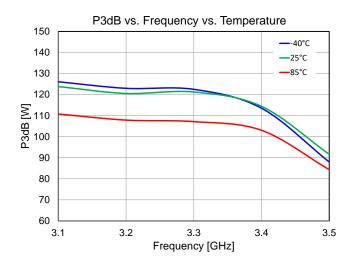


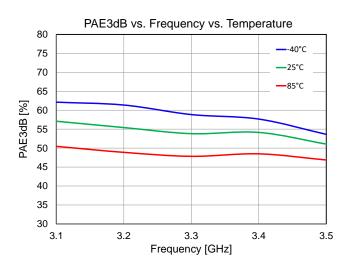


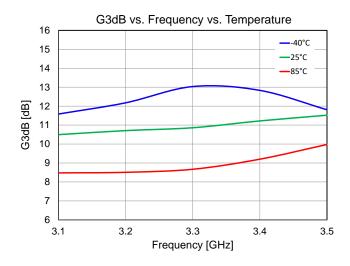



Typical Performance - Load Pull Drive-up^{1, 2}

- 1. Pulsed signal with 100 uS pulse width and 20 % duty cycle, Vd = 28 V, Idq = 260 mA
- 2. See page 15 for load pull and source pull reference planes where the performance was measured.

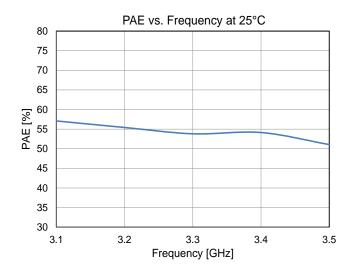




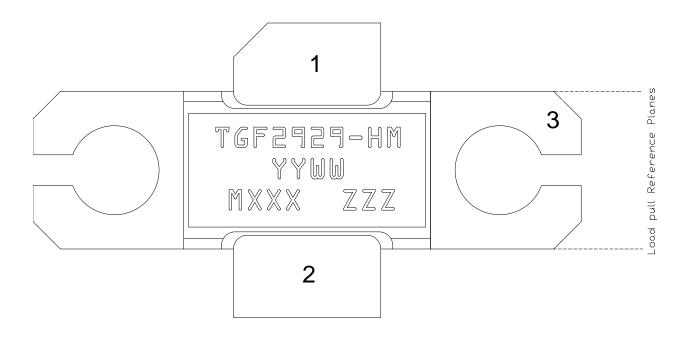

Power Driveup Performance Over Temperatures Of 3.1 – 3.5 GHz EVB¹

Notes:

1. Vd = 28 V, Idq = 260 mA, Pulse Width = 100 uS, Duty Cycle = 20 %



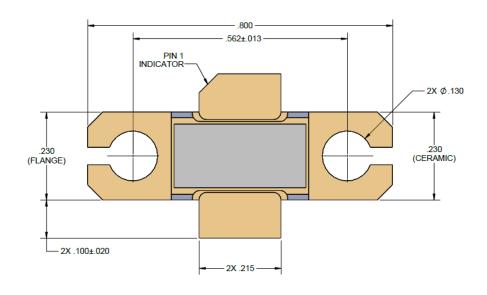
Power Driveup Performance At 25 °C Of 3.1 – 3.5 GHz EVB¹

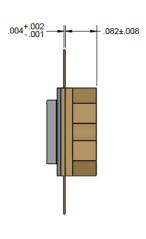

Notes:

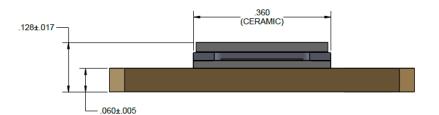
1. Vd = 28 V, Idq = 260 mA, Pulse Width = 100 uS, Duty Cycle = 20 %

Pin Layout ¹

Notes:


1. The TGF2929-HM will be marked with the "TGF2929HM" designator and a lot code marked below the part designator. The "YY" represents the last two digits of the calendar year the part was manufactured, the "WW" is the work week of the assembly lot start, the "MXXX" is the production lot number, and the "ZZZ" is an auto-generated serial number.

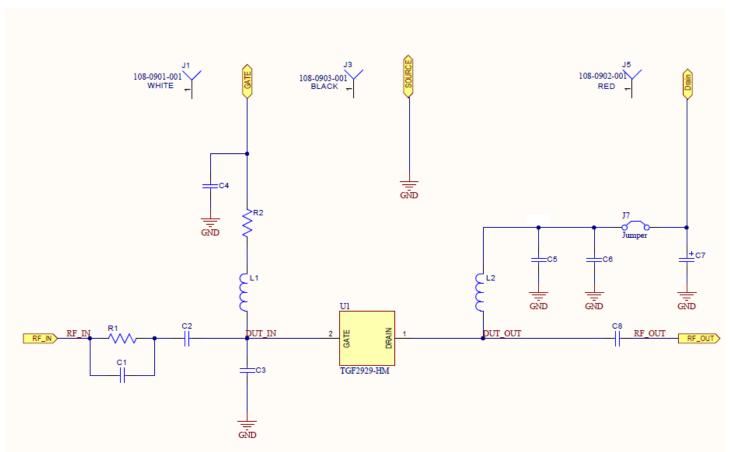

Pin Description


Pin	Symbol	Description
1	VD / RF OUT	Gate voltage / RF Input
2	VG / RF IN	Drain voltage / RF Output
3	Flange	Source to be connected to ground

Mechanical Drawing^{1, 2, 3, 4, 5}

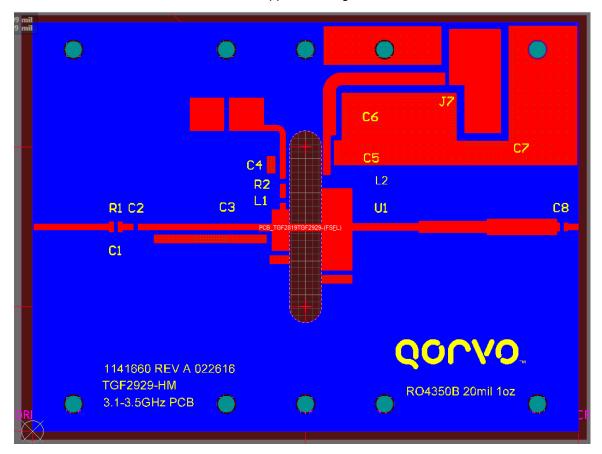
Notes:

- 1. All dimensions are in inches. Otherwise noted, the tolerance is ±0.005 inches.
- 2. Material:


Package base: Metal Ringframe: ceramic

Package lid: ceramic

- 3. Package exposed metal base and leads are gold plated.
- 4. Lid is attached to package with solder.
- 5. Parts meet industry NI360 footprint.


Schematic Of 3.1 – 3.5 GHz EVB

Bias-up Procedure	Bias-down Procedure
1. Set V _G to -4 V.	1. Turn off RF signal.
2. Set I _D current limit to 300 mA.	2. Turn off V _D
3. Apply 28 V V _D .	3. Wait 2 seconds to allow drain capacitor to discharge
4. Slowly adjust V _G until I _D is set to 260 mA.	4. Turn off V _G
5. Set I _D current limit to 7 A	
6. Apply RF.	

PCB Layout Of 3.1 – 3.5 GHz EVB

Board material is RO4350B 0.02" thickness with 1 oz copper cladding.

Bill Of material Of 3.1 – 3.5 GHz EVB

Ref Des	Value	Description	Manufacturer	Part Number
R1	1 kΩ	0603 Resistor	Vishay/Dale	CRCW0603102RJNEA
C1, C2	5.6 pF	RF NPO 250VDC ± 0.1 pF Capacitor	ATC	600S5R6BT
C3	1.2 pF	RF NPO 250VDC ± 0.1 pF Capacitor	ATC	600S1R2BT
L1	22 nH	Inductor	Coilcraft	0805CS-220X-LB
R2	20 Ω	0603 Resistor	Vishay/Dale	CRCW060320R0JNEA
C4	10 uF	Ceramic Capacitor	Murata	C1632X5R0J106M130AC
L2	12.5 nH	Inductor	Coilcraft	A04T_L
C5	2400 pF	Ceramic Capacitor	Murata	C08BL242X-5UN-X0T
C6	1000 pF	Ceramic Capacitor	ATC	800B102JT50XT
C7	220 uF	Electrolytic Capacitor	United Chemi-Con	EMVY500ADA221MJA0G
C8	15 pF	RF NPO 250VDC 5% Capacitor	ATC	600S150JT250XT

Recommended Solder Temperature Profile

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 1B	ANSI/ESDA/JEDEC JS-001	
ESD - Charged Device Model (CDM)	Class C3	ANSI/ESDA/JEDEC JS-002	
			_

Caution! ESD-Sensitive Device

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Package lead plating is NiAu. Au thickness is 60 microinches.

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- · Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u> Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2020 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3
EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+
MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4
EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4
UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL
SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1