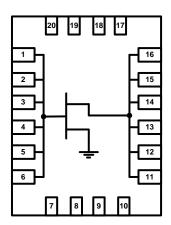
TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Product Overview


The TGF3021-SM is a 30 W (P_{1dB}) discrete GaN on SiC HEMT which operates from 0.03 to 4.0 GHz. The device is constructed with proven TQGaN25 processes, which features advanced field plate techniques to optimize power and efficiency at high drain bias operating conditions. This optimization can potentially lower system costs in terms of fewer amplifier line-ups and lower thermal management costs.

The device is housed in an industry-standard 3 x 4 mm surface mount QFN package.

Lead-free and ROHS compliant

Evaluation boards are available upon request.

Functional Block Diagram

Pad Configuration

Pad No.	Symbol
11 - 16	V _D / RF OUT
1 - 6	V _G / RF IN
7 – 10, 20 - 17	NC
Back side	Source

TriQuin

Key Features

- Frequency: 0.03 to 4.0 GHz
- Output Power (P1dB): 36.0 W at 2 GHz
- Linear Gain: 19.3 dB at 2 GHz
- Typical PAE1dB: 72.7% at 2 GHz
- Operating Voltage: 32 V
- Low thermal resistance package
- CW and Pulse capable
- 3 x 4 mm package

Applications

- Military radar
- Civilian radar
- Land mobile and military radio communications
- Test instrumentation
- Wideband and narrowband amplifiers
- Jammers

Ordering Information

Part Number	Description
TGF3021-SM	QFN Packaged Part
TGF3021-SM-EVB1	0.05 – 0.55 GHz EVB

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Absolute Maximum Ratings

Parameter	Rating
Drain to Gate Voltage (V _{DG})	100 V
Gate Voltage Range (V _G)	-7 to 2 V
Drain Current (I _D)	5.8 A
Gate Current (I _G)	-7.5 to 16.8 mA
CW RF Input Power (PIN)	See page 8.
Storage Temperature	−40 to 150°C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Value	Units
Drain Voltage Range (V _D)	32 (Typ.)	V
Drain Quiescent Current (I _{DQ})	65	mA
Peak Drain Current (I _D)	1800 (Typ.)	mA
Gate Voltage (V _G)	-2.7 (Typ.)	V

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Thermal and Reliability Information - CW⁽¹⁾

Test conditions unless otherwise noted: T_{A} = 25 °C, V_{D} = 32 V, I_{DQ} = 65 mA

Symbol	Parameter	Freq	Min	Typical	Max	Units
		2.0 GHz		19.1		- dB
Glin		2.5 GHz		17.4		
	Linear Gain, Power Tuned	3.0 GHz		16.3		
		3.5 GHz		15.3		
		2.0 GHz		43.8		
P	Output Power at 1 dB Gain Compression, Power	2.5 GHz		43.7		dBm
₽1dB		3.0 GHz		43.6		
		3.5 GHz		43.4		
		2.0 GHz		70.6		- %
PAE _{1dB}	Power-Added Efficiency at 1 dB Gain	2.5 GHz		63		
	Compression, Efficiency Tuned	3.0 GHz		62.3		
		3.5 GHz		62.5		
		2.0 GHz		18.1		- dB
	Coin at 1 dP Compression Dower Tuned	2.5 GHz		16.4		
G _{1dB}	Gain at 1 dB Compression, Power Tuned	3.0 GHz		15.3		
		3.5 GHz		14.3		

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

RF Characterization – 0.05 – 0.55 GHz EVB Performance at 0.25 GHz

Test conditions unless otherwise noted: $T_A = 25 \text{ °C}$, $V_D = 32 \text{ V}$, $I_{DQ} = 65 \text{ mA}$, Signal: CW

Symbol	Parameter	Min	Typical	Max	Units
GLIN	Linear Gain		21.8		dB
P _{1dB}	Output Power at 1 dB Gain Compression		25.7		W
PAE _{1dB}	Power-Added Efficiency at 1 dB Gain Compression		52.4		%
G _{1dB}	Gain at 1 dB Compression		20.8		dB
Gate Leakage	$V_D = +10 \text{ V}, \text{ V}_G = -3.7 \text{ V}$	-8.3		-0.1	mA

RF Characterization – Mismatch Ruggedness at 512 MHz

Test conditions unless otherwise noted: $T_A = 25 \text{ °C}$, $V_D = 32 \text{ V}$, $I_{DQ} = 65 \text{ mA}$ Driving input power is determined at pulsed compression under matched condition at EVB output connector.

Symbol	Parameter	dB Compression	Typical
VSWR	Impedance Mismatch Ruggedness	1	10:1

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Thermal and Reliability Information - CW⁽¹⁾

Parameter	Test Conditions	Value	Units
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ _{JC})	P _{DISS} = 11.3 W, Tbaseplate = 85°C	3.2	°C/W
Channel Temperature, T _{CH}		121	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 15.1 W, Tbaseplate = 85°C	3.3	°C/W
Channel Temperature, T _{CH}		126	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 18.9 W, Tbaseplate = 85°C	3.3	°C/W
Channel Temperature, Тсн		148	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 22.7 W, Tbaseplate = 85°C	3.4	°C/W
Channel Temperature, T _{CH}		162	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 30.2 W, Tbaseplate = 85°C	3.6	°C/W
Channel Temperature, T _{CH}		194	°C

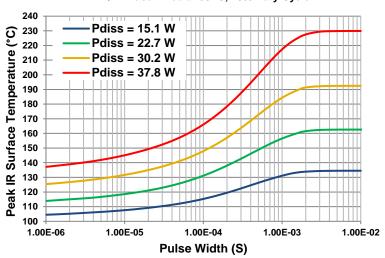
Notes:

1. Thermal resistance measured to bottom of package.

2. Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates

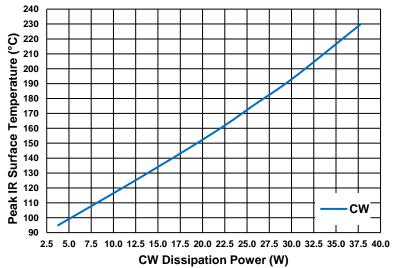
Thermal and Reliability Information - Pulsed ⁽¹⁾

Parameter	Test Conditions	Value	Units
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 15.1 W, Tbaseplate = 85°C Pulse Width = 100 uS	2.0	°C/W
Channel Temperature, TCH	Duty Cycle = 5%	115	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	$P_{DISS} = 22.7 \text{ W}$, Tbaseplate = 85° C Pulse Width = 100 uS	2.0	°C/W
Channel Temperature, TCH	Duty Cycle = 10%	131	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 30.2 W, Tbaseplate = 85°C Pulse Width = 100 uS	2.1	°C/W
Channel Temperature, T _{CH}	Duty Cycle = 20%	148	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	$P_{DISS} = 37.8 \text{ W}$, Tbaseplate = $85^{\circ}C$ Pulse Width = 100 uS	2.1	°C/W
Channel Temperature, T _{CH}	Duty Cycle = 20%	166	°C

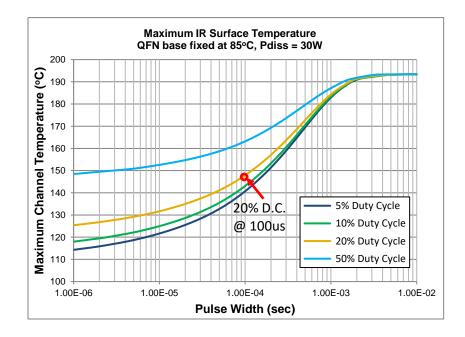

Notes:

1. Thermal resistance measured to bottom of package.

2. Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates


TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Maximum Channel Temperature


Peak IR Surface Temperature vs. Pulse Width QFN Base Fixed at 85 °C, 20% Duty Cycle

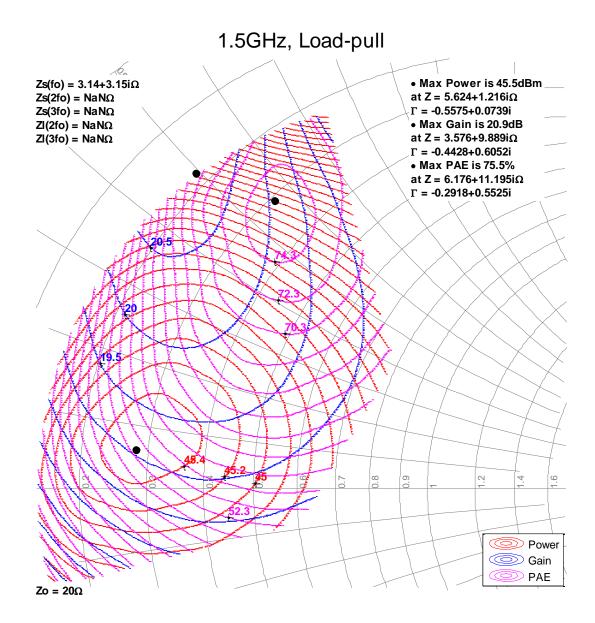
Peak IR Surface Temperature vs. CW Dissipation Power QFN Base Fixed at 85 °C

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Maximum Channel Temperature

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Maximum Input Power⁽¹⁾

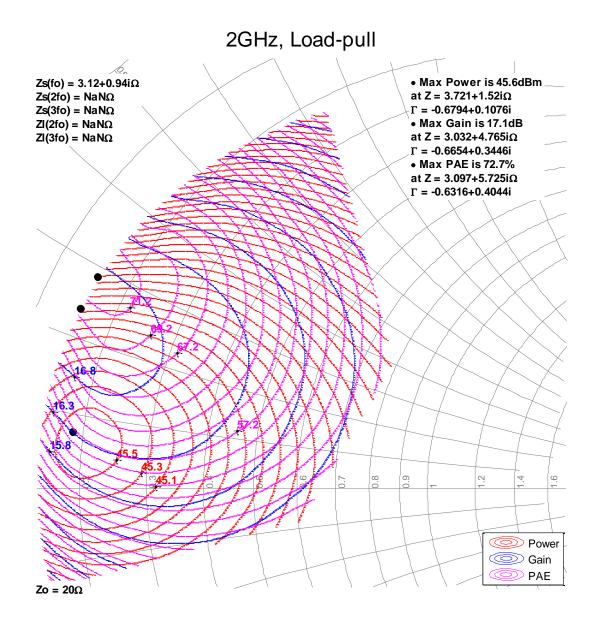

⁽¹⁾ Values are estimated at 25 °C and CW condition.

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Model Load Pull Contours – Pulsed ^(1,2,3)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

- 1. 32 V, 65 mA, Pulsed signal with 100 uS pulse width and 20% duty cycle. 3 dB compression referenced to peak gain.
- 2. See page 30 for load pull and source pull reference planes.
- 3. NaN means the impedances are undefined in load-pull system.

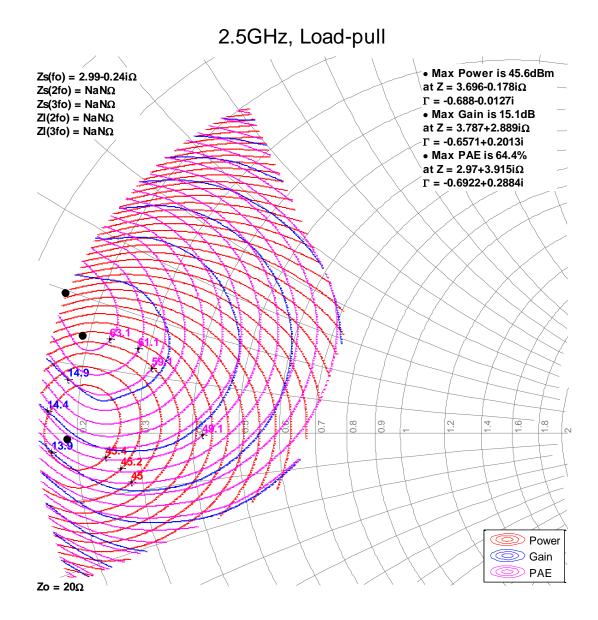


TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Model Load Pull Contours – Pulsed ^(1,2,3)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

- 1. 32 V, 65 mA, Pulsed signal with 100 uS pulse width and 20% duty cycle. 3 dB compression referenced to peak gain.
- 2. See page 28 for load pull and source pull reference planes.
- 3. NaN means the impedances are undefined in load-pull system.

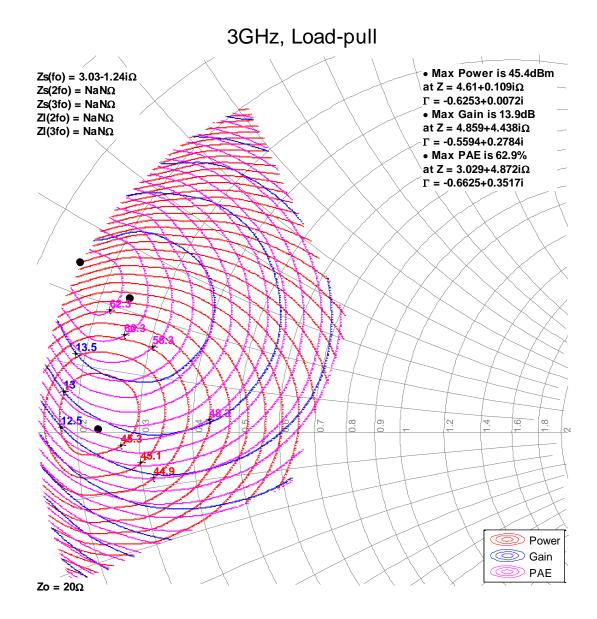


TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Model Load Pull Contours – Pulsed ^(1,2,3)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

- 1. 32 V, 65 mA, Pulsed signal with 100 uS pulse width and 20% duty cycle. 3 dB compression referenced to peak gain.
- 2. See page 28 for load pull and source pull reference planes.
- 3. NaN means the impedances are undefined in load-pull system.

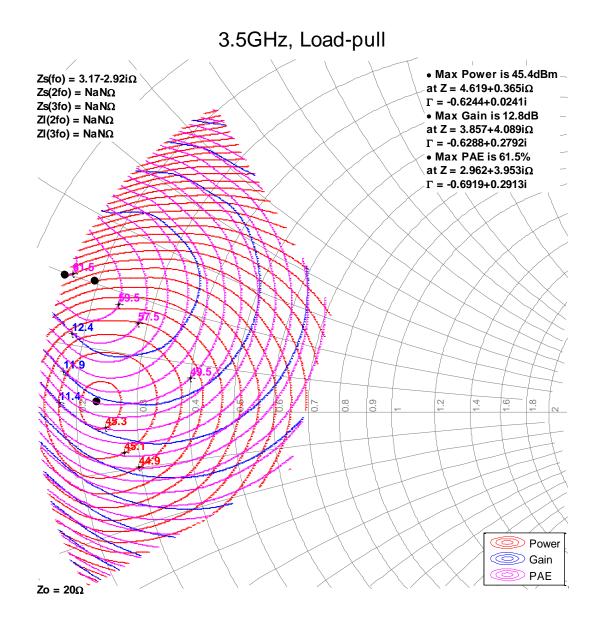


TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Model Load Pull Contours – Pulsed ^(1,2,3)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

- 1. 32 V, 65 mA, Pulsed signal with 100 uS pulse width and 20% duty cycle. 3 dB compression referenced to peak gain.
- 2. See page 28 for load pull and source pull reference planes.
- 3. NaN means the impedances are undefined in load-pull system.

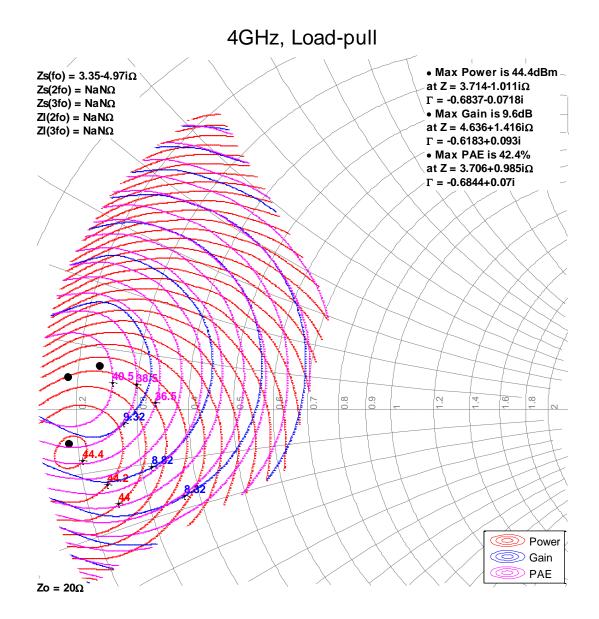


TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Model Load Pull Contours – Pulsed ^(1,2,3)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

- 1. 32 V, 65 mA, Pulsed signal with 100 uS pulse width and 20% duty cycle. 3 dB compression referenced to peak gain.
- 2. See page 28 for load pull and source pull reference planes.
- 3. NaN means the impedances are undefined in load-pull system.

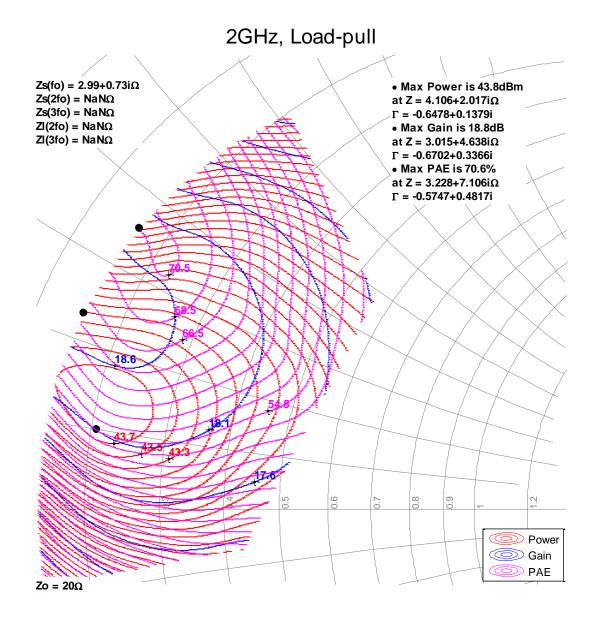


TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Model Load Pull Contours – Pulsed ^(1,2,3)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

- 1. 32 V, 65 mA, Pulsed signal with 100 uS pulse width and 20% duty cycle. 3 dB compression referenced to peak gain.
- 2. See page 28 for load pull and source pull reference planes.
- 3. NaN means the impedances are undefined in load-pull system.

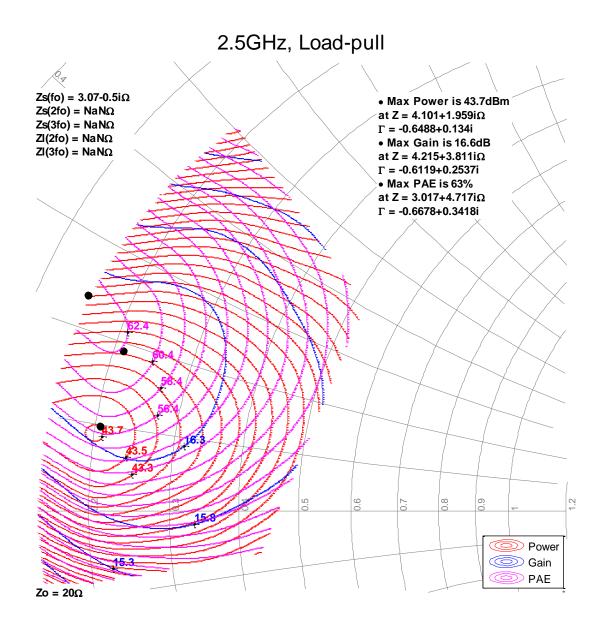


TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Model Load Pull Contours – CW ^(4, 5, 6)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

- 4. 32 V, 65 mA, CW, 1 dB compression referenced to peak gain.
- 5. See page 28 for load pull and source pull reference planes.
- 6. NaN means the impedances are undefined in load-pull system.

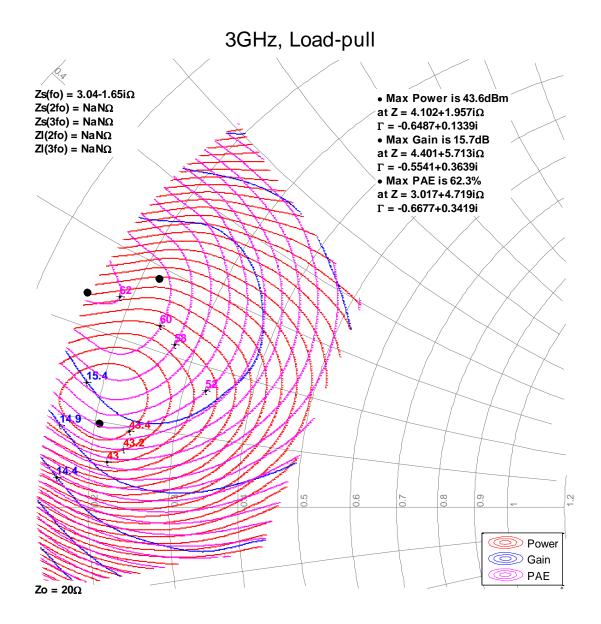


TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Model Load Pull Contours – CW ^(4, 5, 6)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

- 4. 32 V, 65 mA, CW, 1 dB compression referenced to peak gain.
- 5. See page 28 for load pull and source pull reference planes.
- 6. NaN means the impedances are undefined in load-pull system.

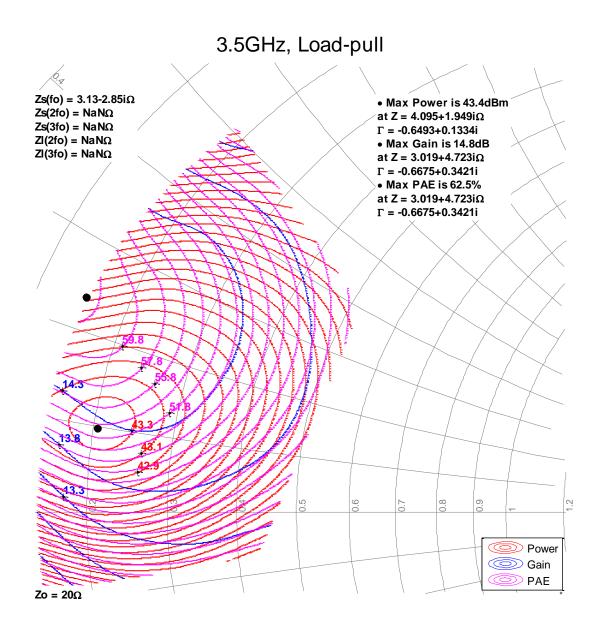


TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Model Load Pull Contours – CW ^(4, 5, 6)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

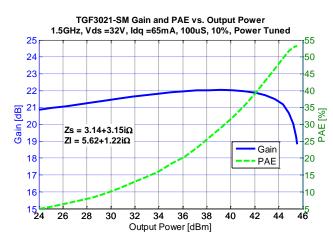
- 4. 32 V, 65 mA, CW, 1 dB compression referenced to peak gain.
- 5. See page 28 for load pull and source pull reference planes.
- 6. NaN means the impedances are undefined in load-pull system.

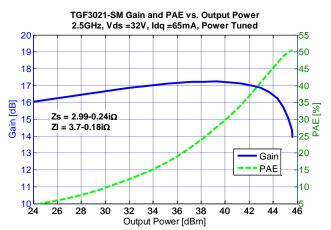


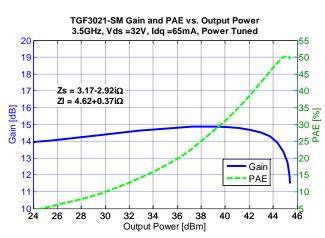
TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

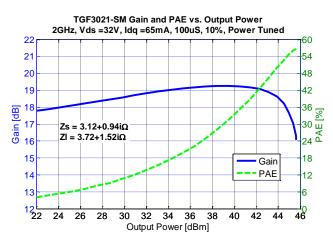
Model Load Pull Contours – CW ^(4, 5, 6)

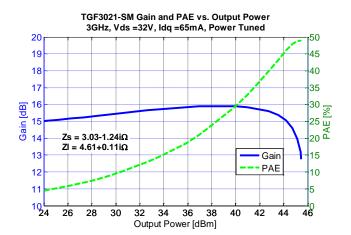
RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

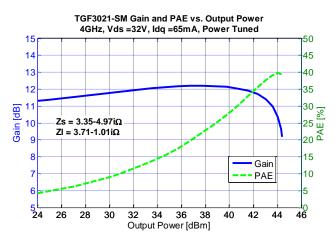

- 4. 32 V, 65 mA, CW, 1 dB compression referenced to peak gain.
- 5. See page 28 for load pull and source pull reference planes.
- 6. NaN means the impedances are undefined in load-pull system.

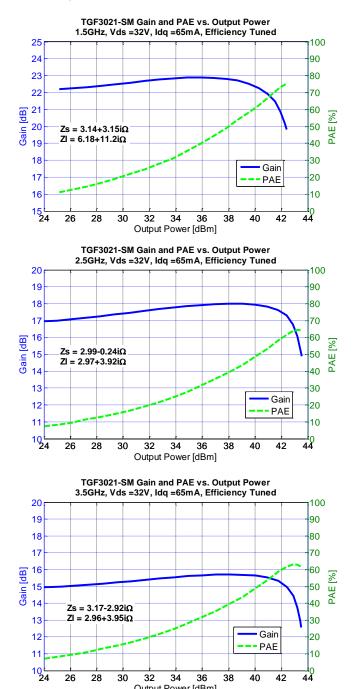


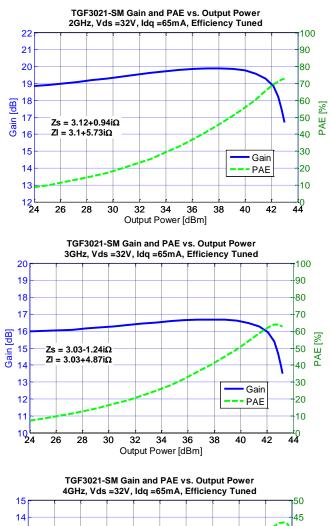

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

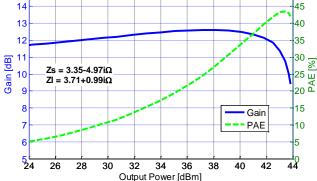

Typical Pulsed Performance – Power Tuned^(1,2)


- 1. Pulsed signal with 100 uS pulse width and 20% duty cycle
- 2. See page 28 for load pull and source pull reference planes where the performance was measured.



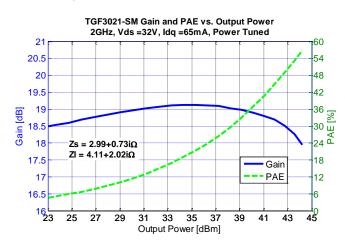

QOCV0.

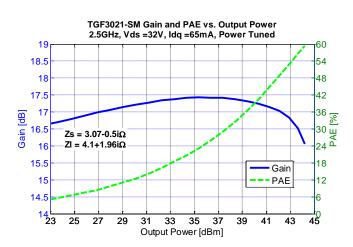

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

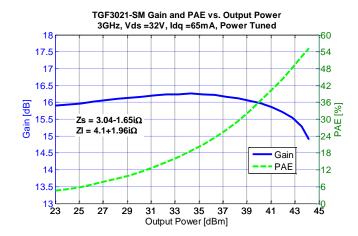

Typical Pulsed Performance – Efficiency Tuned^(1,2)

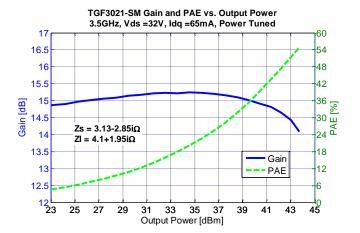
Notes:

- Pulsed signal with 100 uS pulse width and 20% duty cycle 1.
- 2. See page 28 for load pull and source pull reference planes where the performance was measured.

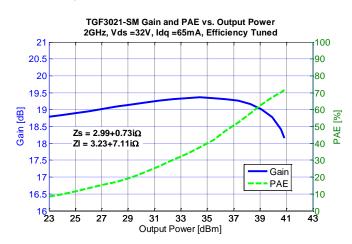


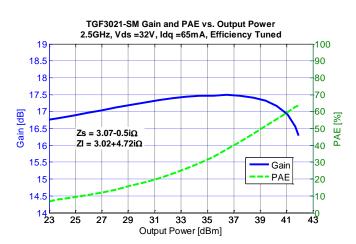

Output Power [dBm]

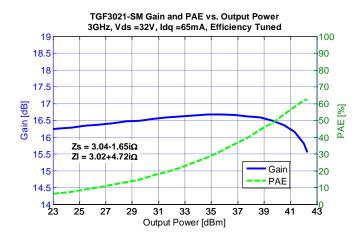

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

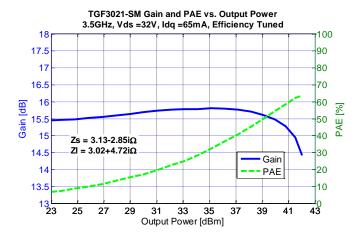

Typical CW Performance – Power Tuned ^(3, 4)

- 3. CW signal
- 4. See page 28 for load pull and source pull reference planes where the performance was measured.

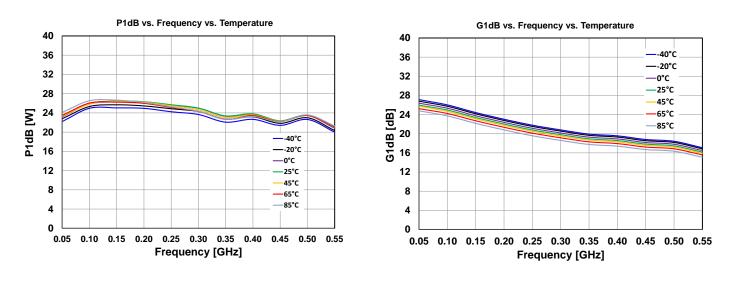


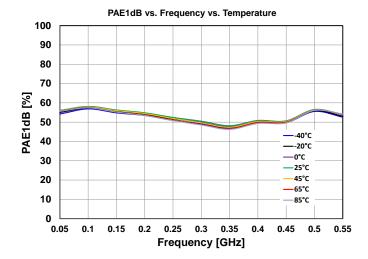



TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor


Typical CW Performance – Efficiency Tuned ^(3, 4)

- 3. CW signal
- 4. See page 28 for load pull and source pull reference planes where the performance was measured.

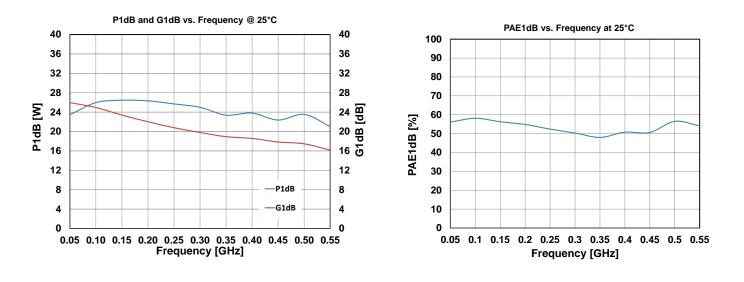



QONOD

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

0.05 – 0.55 GHz Evaluation Board Performance Over Temperature ^(1, 2)

Performance measured on Qorvo's 0.05 GHz to 0.55 GHz Evaluation Board



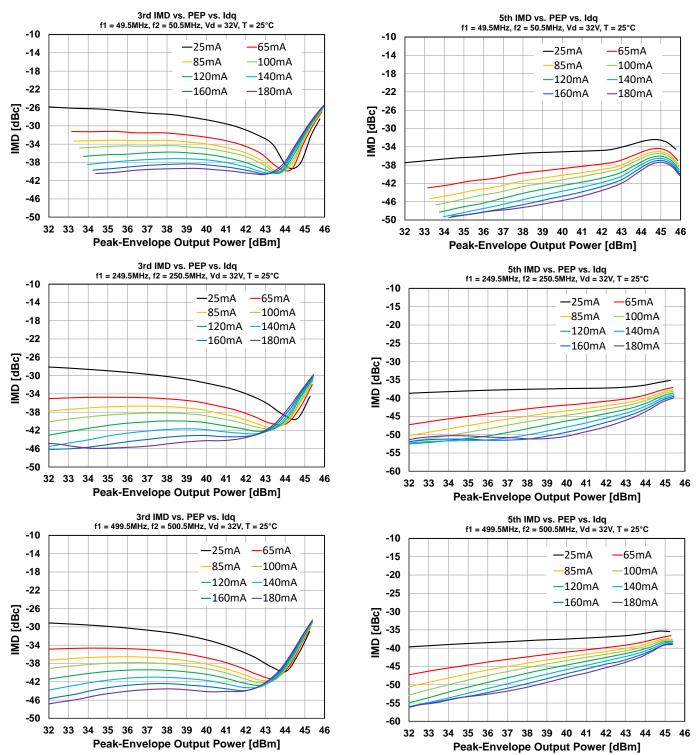
- 1. Test Conditions: V_{DS} = 32 V, I_{DQ} = 65 mA
- 2. Test Signal: CW

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

0.05 – 0.55 GHz Evaluation Board Performance At 25°C ^(1, 2)

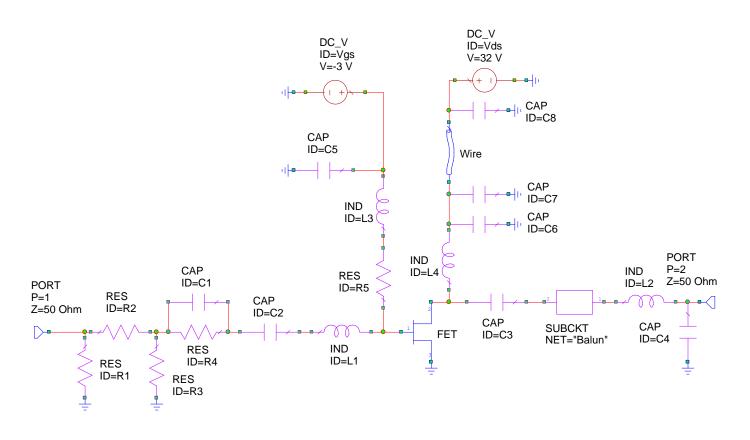
Performance measured on Qorvo's 0.05 GHz to 0.55 GHz Evaluation Board

Notes:


1. Test Conditions: V_{DS} = 32 V, I_{DQ} = 65 mA

2. Test signal: CW

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor


0.05 – 0.55 GHz Evaluation Board Performance - Two-Tone Measurements ⁽¹⁾

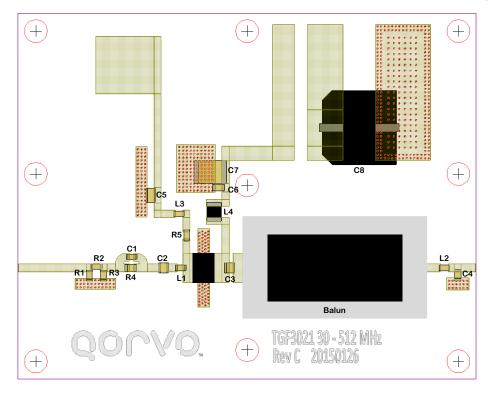
⁽¹⁾ The Intermode Modulation Distortion products (IMD) are referenced to peak-envelope output power, which is 6 dB above single-tone output power.

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

0.05 – 0.55 GHz Application Circuit

Bias-up Procedure

- 1. V_G set to -5 V.
- 2. V_D set to 32 V.
- 3. Adjust V_{G} more positive until quiescent I_{D} is 65 mA.
- 4. Apply RF signal.

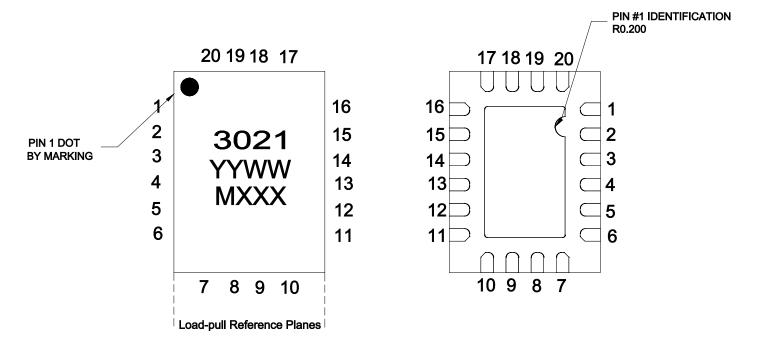

Bias-down Procedure

- 1. Turn off RF signal.
- 2. Turn off V_D and wait 1 second to allow drain capacitor dissipation.
- 3. Turn off V_G .

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

0.05 – 0.55 GHz Evaluation Board Layout

Top RF layer is 0.020" thick Rogers RO4350B, $\varepsilon_r = 3.48$. The pad pattern shown has been developed and tested for optimized assembly at Qorvo Semiconductor. The PCB land pattern has been developed to accommodate lead and package tolerances.



0.05 – 0.55 GHz EVB Bill of Materials

Reference Design	Value	Qty	Manufacturer	Part Number
R1, R3	432 Ω	2	Any	Generic 0603
R2	11.3 Ω	1	Any	Generic 0603
R4	23.7 Ω	1	Any	Generic 0603
R5	10 Ω	1	Any	Generic 0603
C1	15 pF	1	ATC	600S150AT250XT
C2, C3	820 pF	2	ATC	700A821JW050XT
C4	2.7 pF	1	ATC	600S2R7AT250XT
C5	10 uF	1	Murata	GRM188R60J6ME47D
C6	82 pF	1	ATC	600S820FT250XT
C7	10 uF	1	TDK	C5750X7R1H106K320KB
C8	220 uF	1	Nichicon	UWT1H221ML1GS
L1	15 nH	1	Coilcraft	0603HC-15NX
L2	10 nH	1	Coilcraft	0603HC-10NX
L3	1200 nH	1	Coilcraft	0603LS-122X
L4	1100 nH	1	Coilcraft	108AF-112X
Balun	NA	1	Anaren	XMT0310B5012

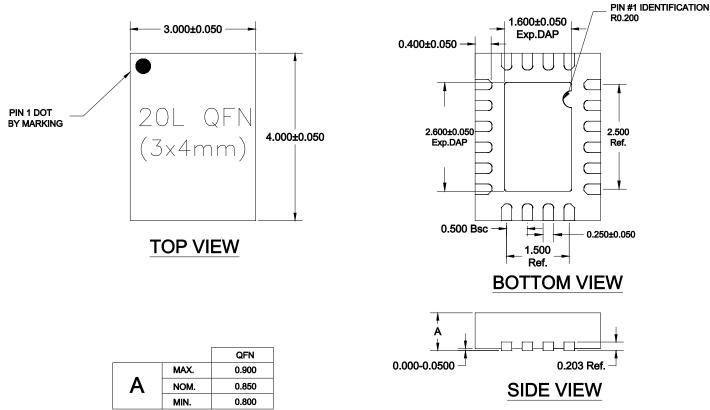
TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Pin Layout

Pin Description

Pin	Symbol	Description
11 - 16	V_D / RF OUT	Drain voltage / RF Output to be matched to 50 ohms; see EVB Layout on page 27 as an example.
1 - 6	V _G / RF IN	Gate voltage / RF Input to be matched to 50 ohms; see EVB Layout on page 27 as an example.
7 – 10, 17 - 20	NC	Not connected
Back side	Source	Source connected to ground
Natas		

Notes:

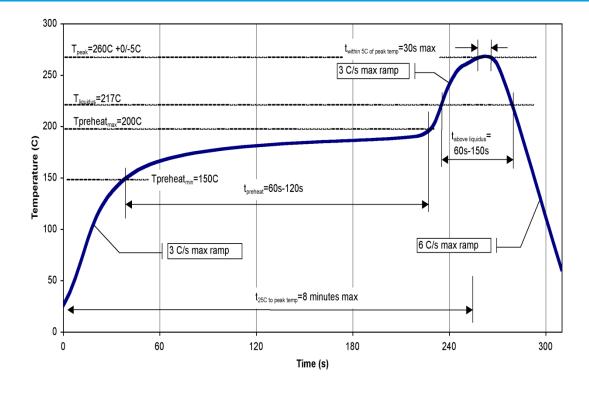

Thermal resistance measured to back side of package

The TGF3021-SM will be marked with the "3021" designator and a lot code marked below the part designator The "YY" represents the last two digits of the calendar year the part was manufactured, the "WW" is the work week of the assembly lot start, and the "MXXX" is the production lot number.

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Mechanical Information

All dimensions are in millimeters.



Note:

Unless otherwise noted, all dimension tolerances are +/-0.127 mm.

This package is lead-free/RoHS-compliant. The plating material on the leads is NiPdAu. It is compatible with both lead-free (maximum 260 °C reflow temperature) and tin-lead (maximum 245°C reflow temperature) soldering processes.

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Recommended Soldering Temperature Profile

TGF3021-SM 30 W, 32 V, 0.03 to 4 GHz, GaN RF Transistor

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 1B (600V)	JEDEC Standard JESD22-A114	
ESD-Charged Device Model (CDM)	Class C3 (1000V)	ANSI/ESDA/JEDEC Standard JS-002	
MSL-Moisture Sensitivity Level	MSL3	IPC/JEDEC Standard J-STD-020	Caution!
			ESD-Sensitive Device

Solderability

Compatible with the latest version of J-STD-020, Lead free solder, 260 °C

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>

Email: customer.support@gorvo.com

Tel: 1-844-890-8163

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2020 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF MOSFET Transistors category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

MRF492 MRFE8VP8600HR5 ARF1511 ARF465BG BF 2030 E6814 BLF861A DU1215S DU28200M UF28100M DU2820S MHT1008NT1 MMRF1014NT1 MRF426 ARF468AG ARF468BG MAPHST0045 MRFE6VP61K25NR6 DU2860U VRF152GMP MRFE6VP5300NR1 BF2040E6814HTSA1 MRFE6VP5150GNR1 LET9060S MRF136Y BF999E6327HTSA1 SD2931-12MR BF998E6327HTSA1 AFV10700HR5 MRF141 MRF171 MRF172 MRF174 QPD1020SR BF 1005S E6327 MRF134 MRF136 MRF137 MRF141G MRF151A MRF151G MRF157 MRF158 MRF160 MRF171A MRF177 UF2840G TGF3021-SM ARF1510 ARF448BG ARF449AG