TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Product Overview

The TQP0104 is a wide band over-molded QFN discrete GaN power amplifier. The device is a single stage unmatched power amplifier transistor.

The TQP0104 can be used in Doherty architecture for the final stage of a base station power amplifier for small cell, microcell, and active antenna systems. The TQP0104 can also be used as a driver in a macrocell base station power amplifier.

The wide bandwidth of the TQP0104 makes it suitable for many different applications from DC to 4 GHz. TQP0104 can deliver P_{SAT} of 30 W at 28 to 32 V operation.

The device is housed in an industry-standard 3 x 4 mm surface mount QFN package.

Lead-free and ROHS compliant

Functional Block Diagram

Pad Configuration

Pad No.	Symbol
1-6	RF IN, V _G
7-10, 17-20	N/C
11-16	RF OUT, V₀
Backside Paddle	RF/DC GND

Key Features

- Frequency: DC to 4.0 GHz
- Output Power (P_{3dB})¹: 30.0 W
- Linear Gain¹: 17.0 dB
- Typical PAE_{3dB}¹: 64.0%
- Operating Voltage: 32 V
- Low thermal resistance package
- CW and Pulse capable
- 3 x 4 x 0.85 mm package Note 1: @ 2.6 GHz

Applications

- Macrocell Base Station Driver
- Microcell Base Station
- Small Cell Final Stage
- Active Antenna
- General Purpose Applications
- Military and Civilian radar
- · Land mobile and military radio communications
- Test instrumentation
- Wideband and narrowband amplifiers
- Jammers

Ordering Information

Part Number	Description
TQP0104	30W, DC-4GHz, 250 Piece 13" Reel
TQP0104-2.6-EVB	2.5-2.7 GHz Eval Board
TQP0104-2.1-DOH	2.1 GHz Doherty Eval Board

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Absolute Maximum Ratings

Parameter	Rating
Drain to Gate Voltage (V _{DG})	100 V
Gate Voltage Range (V _G)	-7 to +2 V
RF Input Power Over Drive above P_{IN} at 36 dBm P_{OUT} , 50 Ω , T = 25°C	8 dB
VSWR Mismatch, P1dB Pulse (20% duty cycle, 100 μs width), T = 25°C	10:1
Storage Temperature	−65 to 150°C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Value	Units
Drain Voltage Range (V _D)	32 (Typ.)	V
Drain Quiescent Current (IDQ)	70	mA
Peak Drain Current (I _D)	1800 (Typ.)	mA
Gate Voltage (V _G) ¹	–2.8 (Typ.)	V

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Note:

1. To be adjusted to desired I_{DQ}

RF Characterization – Simulated Performance CW⁽¹⁾

Parameter	Conditions ⁽¹⁾	Typical Value			Units	
Frequency		2	2.5	3.0	3.5	GHz
VD		32	32	32	32	V
I _{DQ}		65	65	65	65	mA
GLIN	Power Tuned	19.1	17.4	16.3	15.3	dB
Output P _{1dB}	Power Tuned	43.8	43.7	43.6	43.4	dBm
PAE _{1dB}	Power Tuned	70.6	63	62.3	62.5	%
G _{1dB}	Power Tuned	18.1	16.4	15.3	14.3	dB

Notes:

1. Test conditions unless otherwise noted: T_A =+25 °C

RF Characterization – Test Performance at 2.6 GHz

Symbol	Parameter	Min	Typical	Max	Units
P _{3dB}	Output Power at 1 dB Gain Compression		21.4		W
DrE _{3dB}	Drain Efficiency at 3 dB Gain Compression		65		%
G _{3dB}	Gain at 3 dB Compression		14.3		dB

Notes:

1. Test conditions unless otherwise noted: $T_A = 25$ °C, $V_D = 32$ V, $I_{DQ} = 60$ mA, Signal: 100uS Pulse Width, 20% Duty Cycle

Electrical Characterization

Symbol	Parameter	Min	Typical	Max	Units
Gate Leakage	$V_D = +10 V, V_G = -3.7 V$	-7.56			mA

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Thermal and Reliability Information - CW⁽¹⁾

Parameter	Test Conditions	Value	Units
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 11.3 W, Tbaseplate = 85°C	3.2	°C/W
Channel Temperature, T _{CH}		121	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 15.1 W, Tbaseplate = 85°C	3.3	°C/W
Channel Temperature, T _{CH}		126	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 18.9 W, Tbaseplate = 85°C	3.3	°C/W
Channel Temperature, TCH		148	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 22.7 W, Tbaseplate = 85°C	3.4	°C/W
Channel Temperature, TCH		162	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 30.2 W, Tbaseplate = 85°C	3.6	°C/W
Channel Temperature, T _{CH}		194	°C

Notes:

1. Thermal resistance measured to bottom of package.

2. Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates

Thermal and Reliability Information - Pulsed ⁽¹⁾

Parameter	Test Conditions	Value	Units
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 15.1 W, Tbaseplate = 85°C Pulse Width = 100 uS	2.0	°C/W
Channel Temperature, TCH	Duty Cycle = 5%	115	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 22.7 W, Tbaseplate = 85°C Pulse Width = 100 uS	2.0	°C/W
Channel Temperature, TCH	Duty Cycle = 10%	131	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 30.2 W, Tbaseplate = 85°C Pulse Width = 100 uS	2.1	°C/W
Channel Temperature, TCH	Duty Cycle = 20%	148	°C
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	P _{DISS} = 37.8 W, Tbaseplate = 85°C Pulse Width = 100 uS	2.1	°C/W
Channel Temperature, T _{CH}	Duty Cycle = 20%	166	°C

Notes:

1. Thermal resistance measured to bottom of package.

2. Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Maximum Channel Temperature

Peak IR Surface Temperature vs. Pulse Width QFN Base Fixed at 85 °C, 20% Duty Cycle

Peak IR Surface Temperature vs. CW Dissipation Power QFN Base Fixed at 85 °C

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Maximum Channel Temperature

QONO

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Model Load Pull Contours – Pulsed ^(1,2,3)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

Notes:

- 1. 32 V, 65 mA, Pulsed signal with 100 uS pulse width and 20% duty cycle. 3 dB compression referenced to peak gain.
- 2. See page 30 for load pull and source pull reference planes.
- 3. NaN means the impedances are undefined in load-pull system.

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Model Load Pull Contours – Pulsed ^(1,2,3)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

Notes:

- 1. 32 V, 65 mA, Pulsed signal with 100 uS pulse width and 20% duty cycle. 3 dB compression referenced to peak gain.
- 2. See page 28 for load pull and source pull reference planes.
- 3. NaN means the impedances are undefined in load-pull system.

QONOD

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Model Load Pull Contours – CW ^(1,2,3)

RF performance that the device typically exhibits when placed in the specified impedance environment. The impedances are not the impedances of the device, they are the impedances presented to the device via an RF circuit or load-pull system. The impedances listed follow an optimized trajectory to maintain high power and high efficiency.

Notes:

- 1. 32 V, 65 mA. 1 dB compression referenced to peak gain.
- 2. See page 28 for load pull and source pull reference planes.
- 3. NaN means the impedances are undefined in load-pull system.

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Typical Pulsed Performance – Power Tuned⁽¹⁾

Notes:

1. Pulsed signal with 100 uS pulse width and 10% duty cycle

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Typical Pulsed Performance – Efficiency Tuned⁽¹⁾

Notes:

Pulsed signal with 100 uS pulse width and 10% duty cycle

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Typical CW Performance – Power Tuned⁽¹⁾

QOrvo

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Typical CW Performance – Efficiency Tuned⁽¹⁾

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Pin Layout

Pin Description

Pin	Symbol	Description
11 - 16	V _D / RF OUT	Drain voltage / RF Output
1 - 6	V _G / RF IN	Gate voltage / RF
7 – 10, 17 - 20	NC	Not connected
Back side	Source	Source connected to ground

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Mechanical Information

All dimensions are in millimeters.

Note:

Unless otherwise noted, all dimension tolerances are +/-0.127 mm.

This package is lead-free/RoHS-compliant. The plating material on the leads is NiPdAu. It is compatible with both lead-free (maximum 260 °C reflow temperature) and tin-lead (maximum 245°C reflow temperature) soldering processes.

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Recommended Soldering Temperature Profile

TQP0104 30 W, 32 V, DC to 4 GHz, GaN RF Transistor

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 1B	ANSI/ESD/JEDEC JS-001	
ESD-Charged Device Model (CDM)	Class C3	ANSI /ESD/JEDEC JS-002	
MSL-Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	Caution!
			ESD-Sensitive Device

Solderability

Compatible with the latest version of J-STD-020, Lead free solder, 260 °C

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2020 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Qorvo manufacturer:

Other Similar products are found below :

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310 XD1001-BD-000V