## DPDT Coaxial Switches DC to 6 GHz , DC to 20 GHz , DC to 26.5 GHz , DC to 40 GHz

Radiall's PLATINUM SERIES switches are optimised to perform at a high level over an extended life span. With outstanding RF performances, and a guaranteed Insertion Loss repeatability of 0.03 dB over a life span of 10 million switching cycles. PLATINUM SERIES switches are perfect for automated test and measurement equipment, as well as signal monitoring devices.

## PART NUMBER SELECTION


(1) Connector SMA2.9 is equivalent to "K Connector ${ }^{\circledR \text { ", }}$, registered trademark of Anritsu
(2) Delivered with 750 mm (30 inches) ribbon cable + HE10 connector

## PICTURE



## RF PERFORMANCES

| PART NUMBER | R59337314- | R59347314- | R593F7314- | R59387314- |
| :---: | :---: | :---: | :---: | :---: |
| Frequency Range GHz | DC to 6 | DC to 20 | DC to 26.5 | DC to 40 |
| Impedance Ohms | 50 |  |  |  |
| Insertion Loss dB (Maximum) | $0.2+0.025 \times$ frequency (GHz) |  |  |  |
| Isolation dB (Minimum) | 100 | DC to $6 \mathrm{GHz}: \quad: 100$ 6 to $12.4 \mathrm{GHz}: 90$ 12.4 to $20 \mathrm{GHz}: 80$ | $\begin{gathered} \mathrm{DC} \text { to } 6 \mathrm{GHz}: 100 \\ 6 \text { to } 12.4 \mathrm{GHz}: 90 \\ 12.4 \text { to } 20 \mathrm{GHz}: 80 \\ 20 \text { to } 26.5 \mathrm{GHz}: 65 \end{gathered}$ | DC to $6 \mathrm{GHz}: \quad: 100$ 6 to $12.4 \mathrm{GHz}: 90$ 12.4 to $20 \mathrm{GHz}: 80$ 20 to $26.5 \mathrm{GHz}: 65$ 26.5 to $40 \mathrm{GHz}: 60$ |
| V.S.W.R. <br> (Maximum) | 1.20 | DC to 6 GHz 6 to 12.4 GHz 12.4 to $18 \mathrm{GHz}: 1.25$ 18 to $20 \mathrm{GHz}:$ | DC to $6 \mathrm{GHz}:$ 6 to $12.4 \mathrm{GHz}:$ 12.4 to $18 \mathrm{GHz}: 1.40$ 18 to $26.5 \mathrm{GHz}: 1.65$ | DC to $6 \mathrm{GHz}: 1.20$ 6 to $12.4 \mathrm{GHz}: 1.25$ 12.4 to $18 \mathrm{GHz}: 1.40$ 18 to $26.5 \mathrm{GHz}: 1.65$ 26.5 to $40 \mathrm{GHz}: 1.70$ |
| Third order Inter Modulation | -120 dBc typical (2 carriers 20W) |  |  |  |
| Repeatability (measured at $25^{\circ} \mathrm{C}$ ) | 0.03 dB |  |  | 0.05 dB |

## TYPICAL RF PERFORMANCES



[^0]PART NUMBER R593 XXX XXX

## ADDITIONAL SPECIFICATIONS



## ENVIRONMENTAL SPECIFICATIONS

| Operating temperature range ( ${ }^{\circ} \mathrm{C}$ ) | -25 to +75 |
| :---: | :---: |
| Storage temperature range ( ${ }^{\circ} \mathrm{C}$ ) | -55 to +85 |
| Temperature cycling (MIL-STD-202, Method 107D , Cond.A) ( ${ }^{\text {C }}$ ) | -55 to +85 (10 cycles) |
| Vibration (MIL STD 202 , Method 204D , Cond.D) | $10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$ operating |
| Shock (MIL STD 202 , Method 213B , Cond.C) | $50 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine operating |
| Moisture resistance (MIL STD 202 , Method 106E , Cond.E) | $65^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 10$ days |
| Altitude storage (MIL STD 202 , Method 105C , Cond.B) | 50,000 feet ( 15,240 meters) |
| RFI (MIL STD 1344, Method 3008 or IEC 61726) | 40 dB at 20 GHz |

[^1]| PAGE 4/6 | ISSUE 01-07-19 | SERIES DPDT | PART NUMBER R593 XxX xxx |
| :---: | :---: | :---: | :---: |

## DRIVING THE SWITCH

There is two positions for a transfer switch. Each RF path can be closed by applying Ground or TTL "High" to the corresponding "drive" pin.


Nating oable oonnector

## SCHEMATIC DIAGRAM



|  | RF continuity | Indicator |
| :--- | :---: | :---: |
| Position 1 | $1-2 / 3-4$ | ICom - I1 |
| Position 2 | $1-3 / 2-4$ | ICom - I2 |

## ELECTRONIC POSITION INDICATORS

Pin number Function


## Standard drive

- Connect pin 9 to ground (See note 1).
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF paths by applying Ground to the corresponding "drive" pin (Ex: apply Ground to pin 3 to close RF path 1-2 and 3-4).
- To select the second path, ensure that unwanted RF path "drive" pins are disconnected from Ground. Apply Ground to the "drive" pin which corresponds to the desired RF paths (Ex: apply Ground to pin 5 to close RF path 1-3 and 2-4).


## TTL drive (Dual line)

- Connect pin 9 to ground.
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying TTL "High " to the corresponding "drive" pin (Ex: apply TTL "High" to pin 7 and TTL "Low" to pin 8 to close RF paths position 1).
- To select the second path, ensure that unwanted RF path "drive" pins are in TTL "Low" position. Apply TTL "High" to the "drive" pin which correspond to the desired RF path and TTL "low" to the undesired. (Ex: apply TTL "High" to pin 8 and TTL "Low" to pin 7 to close RF paths position 2).


## TTL drive (Single line)

- Connect pin 9 to ground.
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Connect pin 8 to TTL "High".
- Select (close) position 1 by applying TTL "High " to pin 7 (Ex: apply TTL "High" to pin 7 to close RF paths 1-2 and 3-4).
- Select position 2 by applying TTL "Low " to pin 7 (Ex: apply TTL "Low" to pin 7 to close RF paths 1-3 and 2-4).

Note 1
Pin 9 does not need to be grounded for the switch to operate in standard drive. If pin 9 is not grounded, the position indicators will only function while the appropriate drive has applied. Therefore, if a pulse drive is used and continuous indicator operation is required, pin 9 must be grounded.

The electronic position indicators utilise photo-MOS transistors which are driven by the mechanical position of the RF paths moving elements. The circuitry consists of a common which can be connected to an output corresponding to selected RF path. The photo-MOS transistors are configured for AC and/or DC operation. The electronic position indicators require the supply ( 20 to 32 VDC) to be connected to pin 1 and ground connected to pin 9 .

## TYPICAL OUTLINE DRAWING

SMA or SMA 2.9 Connectors


All dimensions are in millimetres [inches]. General tolerances: $\pm 0.5 \mathrm{~mm}$ [0.02 in]

| Connectors | SMA | SMA2.9 |
| :---: | :---: | :---: |
| A max (mm / inches) | $7.7 / 0.303$ | $6.7 / 0.264$ |

## POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature : $+25^{\circ} \mathrm{C}$
- Sea level
- V.S.W.R. : 1 and cold switching



## DERATING FACTOR VERSUS V.S.W.R.

The average power input must be reduced for load V.S.W.R. above 1.


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Coaxial Switches category:
Click to view products by Radiall manufacturer:

Other Similar products are found below :
CR-53S10 R599311000 R599906000 R599910000 CCT-38S150-T CR-58S160 MS180LH3-HRMJ-040V300A R599312000 R512F73417 R514F73417 R595333210 R595F53225 R591363400 R595433410 R595333215 R595337220 R595343115 R595343125 R591362440 $\underline{R 593373148} \underline{\text { R595343215 CCR-33K40 R595357325 CCS-18N480-TDS R591702640 R591763600 R591703620 CR-33K10 R599313000 }}$ R516431100 R591722605 ARD15105 MS156LH1-HRMJ-088V300A R570412000 R570412100 R570413000 R570422100 R570423000 $\underline{R 570432000} \underline{\text { R570433000 R570442000 R570442100 R570412030 R570423030 R570432010 R570433100 R570443030 R570442010 }}$ R570413030 R570452000


[^0]:    This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary

[^1]:    This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.

