
(1) Connector SMA2.9 is equivalent to "K Connector ${ }^{\circledR \text { " }}$, registered trademark of Anritsu

PICTURE

[^0]
RF PERFORMANCES

PART NUMBER	R5953-----	R5954-----	R595F-----	R5958-----
Frequency Range GHz	DC to 6	DC to 20	DC to 26.5	DC to 40
Impedance Ohms	50			
Insertion Loss dB (Maximum)	$0.20+(0.45 / 26.5) \times$ frequency (GHz)			
Isolation dB (Minimum)	85	$\begin{aligned} & \mathrm{DC} \text { to } 6 \mathrm{GHz}: 85 \\ & 6 \text { to } 12.4 \mathrm{GHz}: 75 \\ & 12.4 \text { to } 20 \mathrm{GHz}: 65 \end{aligned}$	DC to $6 \mathrm{GHz}: 85$ 6 to $12.4 \mathrm{GHz}: 75$ 12.4 to $20 \mathrm{GHz}: 65$ 20 to $26.5 \mathrm{GHz}: 60$	$\begin{aligned} & \hline \text { DC to } 6 \mathrm{GHz}: 85 \\ & 6 \text { to } 12.4 \mathrm{GHz}: 75 \\ & 12.4 \text { to } 20 \mathrm{GHz}: 65 \\ & 20 \text { to } 26.5 \mathrm{GHz}: 60 \\ & 26.5 \text { to } 40 \mathrm{GHz}: 55 \end{aligned}$
V.S.W.R. (Maximum)	1.15	DC to $6 \mathrm{GHz}:$ 6 to $12.4 \mathrm{GHz}: 1.25$ 12.4 to $20 \mathrm{GHz}: 1.30$	DC to $6 \mathrm{GHz}:$ 6 to $12.4 \mathrm{GHz}: 1.15$ 12.4 to $20 \mathrm{GHz}: 1.30$ 20 to $26.5 \mathrm{GHz}: 1.60$	DC to $6 \mathrm{GHz}: 1.15$ 6 to $12.4 \mathrm{GHz}: 1.25$ 12.4 to $20 \mathrm{GHz}: 1.30$ 18 to $26.5 \mathrm{GHz}: 1.60$ 26.5 to $40 \mathrm{GHz}: 1.80$
Third order Inter Modulation	-120 dBc typical (2 carriers 20W)			
Repeatability (up to 10 million cycles measured at $25^{\circ} \mathrm{C}$)	0.03 dB maximum			0.05 dB maximum

[^1]Technical Data Sheet
HIGH PERFORMANCE DP3T-SPDT SWITCHES PLATINUM Series

ENVIRONMENTAL SPECIFICATIONS

Operating temperature range (${ }^{\circ} \mathrm{C}$)	-25 to +75
Storage temperature range (${ }^{\circ} \mathrm{C}$)	-55 to +85
Temperature cycling (MIL-STD-202, Method 107D , Cond.A) (${ }^{\circ} \mathrm{C}$)	-55 to +85 (10 cycles)
Sine vibration operating (MIL STD 202 , Method 204D , Cond.D)	$10-2000 \mathrm{~Hz}, 20 \mathrm{~g}$
Random vibration operating	16.91 g (rms) 50-2000 Hz 3min/axis
Shock operating (MIL STD 202 , Method 213B, Cond.G)	$50 \mathrm{~g} / 11 \mathrm{~ms}$, sawtooth
Humidity operating	15 to 95% relative humidity
Humidity storage (MIL STD 202, Method 106E, Cond.E)	$65^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 10$ days
Altitude operating	15,000 feet (4,600 meters)
Altitude storage (MIL STD 202, Method 105C , Cond.B)	50,000 feet (15,240 meters)

[^2]
SWITCH MODEL 1: NON TERMINATED SPDT SWITCH

The non-terminated SPDT switch is a single pole double throw switch. This switch is "break before make".

RF SCHEMATIC DIAGRAM

Position E1

INDICATORS POSITION

State "11"

Standard drive option "1" (Positive common):

- Connect pin +Vcc to supply
- Select desired RF path by applying ground to the corresponding "Close" pin (Ex: ground pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open).
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 1-2 and close RF path 2-3)

Solder pins

State "22"

Position E2

TTL drive option " 2 "

- Connect pin GND to ground.
- Connect pin +Vcc to supply
- Select (close) desired RF path by applying TTL "High " to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open).
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path.
(Ex: apply TTL "High" to pin E2 to open RF path 1-2 and close RF path 2-3).

D-Sub connector

SWITCH MODEL 2: TERMINATED SPDT SWITCH

The-terminated SPDT switch is a single pole double throw switch. The unused ports are terminated into 50ohms. This switch is "break before make".

RF SCHEMATIC DIAGRAM

Position E1

Position E2

INDICATORS POSITION

State "11"

Standard drive option "1" (Positive common):

- Connect pin +Vcc to supply
- Select desired RF path by applying ground to the corresponding "Close" pin (Ex: ground pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open).
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 1-2 and close RF path 2-3)

D-Sub connector

Solder pins

State "22"

TTL drive option " 2 "

- Connect pin GND to ground.
- Connect pin +Vcc to supply
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open).
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path.
(Ex: apply TTL "High" to pin E2 to open RF path 1-2 and close RF path 2-3).

D-Sub connector
Solder pins

PAGE 7/12	ISSUE 05-11-18	SERIES DP3T/SPDT	PART NUMBER R595 XXX XXX
	with D-Sub con 123	All dimensions are in mi	[inches]. Model SMA with solder pins
Mod 4×3 	9 with D-Sub co		Model SMA2.9with solder pins
$4-40$			TOP view - solder pins

SWITCH MODEL 3: TERMINATED 4 PORT BYPASS SWITCH

The terminated 4 port bypass switch can terminate into 50 ohms the device under test. These switches are "break before make".

RF SCHEMATIC DIAGRAM

Position E1

Position E2

INDICATORS POSITION

State "11"

Standard drive option "1" (Positive common):

- Connect pin +Vcc to supply
- Select desired RF path by applying ground to the corresponding "Close" pin (Ex: ground pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open).
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 1-2 and close RF path 2-3)

D-Sub connector

State "22"

TTL drive option " 2 "

- Connect pin GND to ground.
- Connect pin +Vcc to supply
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open).
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path.
(Ex: apply TTL "High" to pin E2 to open RF path 1-2 and close RF path 2-3).

D-Sub connector
Solder pins

SWITCH MODEL 4: NON TERMINATED 5 PORT DP3T SWITCH

The non-terminated 5 port DP3T switch can used as SPDT with high power terminations, as a bypass switch. In this application, the fifth port can be terminated externally with a high power termination. These switches are "break before make".

RF SCHEMATIC DIAGRAM

Position E2

INDICATORS POSITION

State "11"

Standard drive option "1" (Positive common):

- Connect pin +Vcc to supply
- Select desired RF path by applying ground to the corresponding "Close" pin (Ex: ground pin E1 to switch to position E1. RF path 2-3and RF path 4-5 open).
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 2-3 and 4-5 and close RF path 1-2 and 3-4)

D-Sub connector
Solder pins

State "22"

TTL drive option " 2 "

- Connect pin GND to ground.
- Connect pin +Vcc to supply
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 2-3 and RF path 4-5 closed and RF path 1-2 and 3-4 open).
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path.
(Ex: apply TTL "High" to pin E2 to open RF path 2-3 and 45 and close RF path 1-2 and 3-4).

D-Sub connector
Solder pins

POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature: $+25^{\circ} \mathrm{C}$
- Sea level
- V.S.W.R.: 1 and cold switching

DERATING FACTOR VERSUS V.S.W.R.

The average power input must be reduced for load V.S.W.R. above 1.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Frequency / RF Relays category:
Click to view products by Radiall manufacturer:
Other Similar products are found below :
134M4-26 134YZM4-12 136CM9-5 ER136CZM9-5B ER412DYM-12B ARA200A4HM01 3SBH1020A2 400-192-10 412TM-18
ARN12A12 422DM-26 411T-12 LB363-100-5 D3210 ARN10A12 ER116C-26A ER114ZM4-12A/SQ ER412-26B/Q ER134DYZ-12A 36 AT5 25-200ZA 36 T5 48-000ZA 27 T5 24-200ZA 27 T5 26-200ZA 27 T5 28-200ZA ER411DM4-12A/SQ 732-5/Q
$\underline{R 591362640} \underline{R 591723400}$ R595867120 HF3 02 R594873417 R595863115 IM43TS IMB03CTS IM05CGR IM02CGR IM21TS 732TN-26
1-1462038-1 IMB06CTS 1462041-3 $\underline{1462051-5} \underline{1462050-1} \underline{1462050-2}$ G6K-2F-RF-S-DC5 ARE10A4H ARE1024 ARS1012 ARS1024 ARJ22A12

[^0]: This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement
 from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.

[^1]: This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.

[^2]: This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.

