
LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document. No	IE-SP-074	
Released Date	2020/07/22	
Page No.	1	

1 Scope:

- 1.1 This specification is applicable to lead free and halogen free of RoHS directive for LRE series metal alloy low-resistance resistor.
- 1.2 The product is for general electronic purpose.

2 Explanation Of Part Numbers:

Туре	Size (inch)	Number of Terminals	Rated Power	Resistance (4~5 Digits)	Tolerance	Packaging
Metal Alloy Low Resistance Resistor	0402 0603 0805 1206	2: 2 terminals	P=1/6W H=1/5W G=1/4W F=1/3W E=3/4W C=1/2W 1=1.0W A=1.5W	EX: $R0025 = 2.5 \text{ m}\Omega$ $R005 = 5\text{m}\Omega$ $R010 = 10\text{m}\Omega$	D=±0.5% F=± 1.0% G=± 2.0% J=± 5.0%	5=5,000pcs TH=10,000pcs

	IE		QA	Remark	Janua Dan DATA Cantan
Written	Checked	Approved	Signing	IT'S NOT UNDER CONTROL FOR PDF FILE	Issue Dep. DATA Center.
V 16 35	27/1	10	女 3- 8+		
久入45多	70000	INCAL-	2 EY 题	PLS NOTE THE VERSION STATED	Series No. 60
		Dosa 1	A 14 .16.0	Do not copy without permission	Series No. OO

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074	
Released Date	2020/07/22	
Page No.	2	

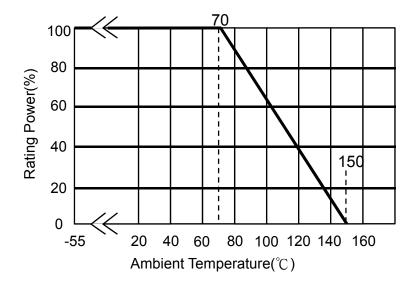
3 Product Specifications:

	-	Max.				Resistance Range (mΩ)		Operating	
Туре	# of Terminals	Rating Power	Rating Current	Overload Current	T.C.R. (ppm/°C)	D (±0.5%)	F (±1%) G (±2%) J (±5%)	Temperature Range	
					≦±600		1.5≦ R <3		
		1/6W			≦ ±200		3		
		17000			≦±125		4~5		
					≦±50		10		
					≦±600		1.5≦ R <3		
0402	2	1/5W			≦ ±200		3		
0402	2	1/300			≦±125		4~5		
					≦±50	-	10		
					≦ ±200	-	3		
		1/4W		'		≦±125	-	4~5	
								≦±50	-
		1/3W			≦±50		10		
		1/3W			≦±450		1≦ R <4		
0603	2	1/300	/5VV Ir=√P/R	$Ir = \sqrt{P/R}$ $Io = \sqrt{4P/R}$	≦±50	10≦ R ≦60	4≦ R ≦60	-55~+150°C	
0000		1/2W	•		≦±450		2≦ R <4	-55~+150 C	
		1/2 V V	1/2 V V		≦±50	10≦ R ≦15	4≦ R ≦15		
		1/2W			≦±100		1.5≦ R <3		
					≦±75		3≦ R <5		
0805	2				≦±50	5≦ R ≦70	5≦ R ≦70		
0000					≦±100		1.5≦ R <3		
		3/4W			≦±75		3≦ R <5		
					≦±50	5≦ R ≦10	5≦ R ≦10		
					≦±400		1≦ R <2		
		1/2 W			≦±75		2≦ R <4		
1206					≦±50	5≦ R ≦75	4≦ R ≦75		
1200	_				≦±400		1≦ R <2		
		1 W			≦±75		2≦ R <4		
					≦±50	5≦ R ≦75	4≦ R ≦75		

Ir=Rating Current(A)

Io= Overload Current(A)

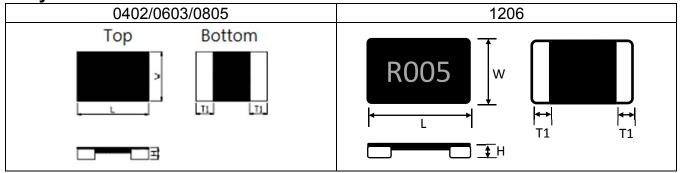
P= Rating Power(W)


 $R=Resistance(\Omega)$

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not conveith out a consisting	Series No. 60
	Do not copy without permission	

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074	
Released Date	2020/07/22	
Page No.	3	


3.1 Power Derating Curve: Operating Temperature Range: - 55 \sim +150 $^{\circ}$ C For resistors operated in ambient temperatures 70 $^{\circ}$ C, power rating shall be derated in accordance with the curve below:

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074
Released Date	2020/07/22
Page No.	4

4 Physical Dimensions:

Туре	Power Rating (Watts)	Resistance Range (mΩ)	L	w	Н	Т1	
0.400	1/6 & 1/5	6 & 1/5 1.5~5 0.039 10 (1.00)		0.020±0.004 (0.50±0.10)	0.010±0.004 (0.25±0.10)	0.010±0.004 (0.25±0.10)	
0402	1/4	3~5 10	0.039±0.004	0.020±0.004	0.010±0.004	0.010±0.004	
	1/3	10	(1.00±0.10)	(0.50±0.10)	(0.25±0.10)	(0.25±0.10)	
0603	1/3	1 ~ 60	0.063±0.008	0.031±0.008	0.010±0.004	0.012±0.006	
1/2	2 ~ 15	(1.60±0.20)	(0.80±0.20)	(0.25±0.10)	(0.30±0.15)		
0005	1/2 & 3/4	1.5 2 2.5	0.08±0.008 (2.032±0.20)	0.05±0.008 (1.270±0.20)	0.014 ^{+0.002} -0.004 (0.35 ^{+0.05} _{-0.10})	0.02±0.006 (0.50±0.15)	
0805	1/2	3 ~ 70	0.08±0.008	0.05±0.008	0.012 ^{+0.002} -0.004	0.014±0.008	
	3/4	3 ~ 10	(2.032±0.20)	(1.270±0.20)	$(0.30^{+0.05}_{-0.10})$	(0.35±0.20)	
		1≦R<3			0.016±0.008 (0.40±0.20)	0.035±0.008 (0.90±0.20)	
1206	1/2 & 1	1/2 & 1 $3 \le R < 4$ 0.126±0.008 (3.20±0.20)		0.063±0.008 (1.60±0.20)		0.024±0.008 (0.60±0.20)	
		4≦R≦75				0.014±0.008 (0.35±0.20)	

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep.DATA Center.	
Kemark	Do not copy without permission	Series No. 60	

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074
Released Date	2020/07/22
Page No.	5

4.1 Material of Alloy

Type	Watts	Material	Resistance
LRE0402	1/6W 1/5W 1/4W 1/3W	Copper-Manganese Alloy	1.5mΩ≤R≤10mΩ
LRE0603	1/3W	Copper-Manganese Alloy	1mΩ≤R<25mΩ
1/2W	1/2W	Iron-Chromium Aluminium Alloy	25mΩ≤R≤60mΩ
LRE0805	1/2W	Copper-Manganese Alloy	1.5mΩ≤R≤20mΩ
LKEU003	3/4W	Iron-Chromium Aluminium Alloy	21mΩ≤R≤70mΩ
	1/2W	Copper-Manganese Alloy	1mΩ≤R≤21mΩ
LRE1206		Iron-Chromium Aluminium Alloy	22mΩ≤R≤75mΩ
LRE1200	1W	Copper-Manganese Alloy	1mΩ≤R≤10mΩ
		Iron-Chromium Aluminium Alloy	11mΩ≤R≤75mΩ

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60
	Do not copy without permission	

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074
Released Date	2020/07/22
Page No.	6

5 Reliability Performance:

5.1 Electrical Performance:

Test Item		Conditions of	Test Limits			
Temperature Coefficient of Resistance (TCR)	R1: resistanR2: resistanT1: Room teT2: Tempera	(R2-R1) R1 (T2-T1) ce of room tempe ce of 150 °C emperature ature at 150 °C C 5201-1 4.8		Refer to Paragraph 3. general specifications		
Short Time Overload	Applied Overloa about 30 minute	ad for 5 seconds a ses, then measure condition refer to Power (W) 1/6 & 1/5 & 1/4 1/3 & 1/2 & 3/4 1/2 & 3.0		≦±0.5% No evidence of mechanical damage		
Insulation Resistance	terminal for 60s resistance betw	in the fixture, added ecs then measure een electrodes and base 201-1 4.6	sure	$\geq 10^8 \Omega$		
Dielectric Withstanding Voltage	Applied 300VA 50 mA (max.) Refer to JIS-C5	C for 1 minute, an 201-1 4.7		No short or burned on the appearance.		

5.2 Mechanical /Constructional Performance:

Test Item	Conditions of Test	Test Limits
Resistance to Solder Heat	The tested resistor be immersed 25 mm/sec into molten solder of 260±5℃ for 10±1secs. Then the resistor is left in the room for 1 hour, and measured its resistance variance rate. Refer to JIS-C5201-1 4.18	≤±0.5% No evidence of mechanical damage
Solderability	Add flux into tested resistors, immersion into solder bath in temperature 245±5°C for 3±0.5secs. Refer to JIS-C5201-1 4.17	Solder coverage over 95%
Vibration	The resistor shall be mounted by its terminal leads to the supporting terminals on the solid table. The entire frequency range :from 10 Hz to 55 Hz and return to 10 Hz, shall be transferred in 1 min. Amplitude : 1.5mm This motion shall be applied for a period of 4 hours in each 3 mutually perpendicular directions (a total of 12hrs) Refer to JIS-C5201-1 4.22	≦±0.5% No evidence of mechanical damage
Resistance to solvent	The tested resistor be immersed into isopropyl alcohol of $20\sim25^{\circ}$ C for 60secs, then the resistor is left in the room for 48 hrs. Refer to JIS-C5201-1 4.29	≦±0.5% No evidence of mechanical damage

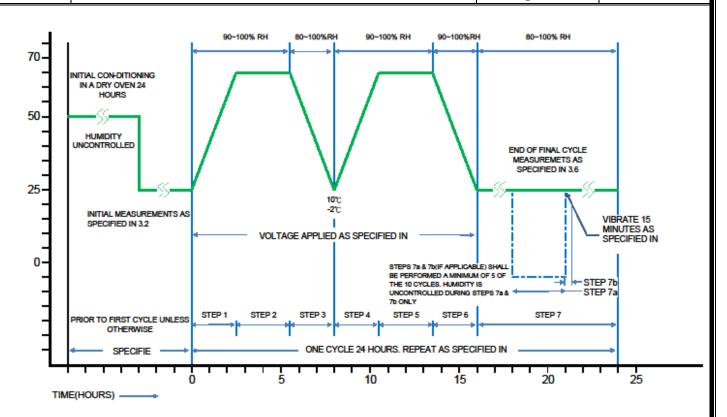
Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep.DATA Center.
		Series No. 60
	Do not copy without permission	301100 110. 3

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074		
Released Date	2020/07/22		
Page No.	7		

5.3 Environmental Performance:

Test Item	Conditions of Test	Test Limits
Low Temperature	Put the tested resistor in chamber under temperature -55±2°C for 1,000 hours. Then leaving the tested resistor	≤±0.5% No evidence of mechanical damage
Exposure (Storage)	in room temperature for 60 minutes, and measure its resistance variance rate. Refer to JIS-C5201-1 4.23.4	
	Put tested resistor in chamber under temperature	≦±1.0%
High Temperature	150±5℃ for 1,000 hours. Then leaving the tested	No evidence of mechanical damage
Exposure (Storage)	resistor in room temperature for 60 minutes , and measure its resistance variance rate. Refer to JIS-C5201-1 4.23.2	
	Put the tested resistor in the chamber under the	≦±1.0%
	temperature cycling which shown in the following table shall be repeated 1,000 times (0603 & 0402 for 300	No evidence of mechanical damage
Temperature	times)consecutively. Then leaving the tested resistor in	
Cycling (Rapid	the room temperature for 60 minutes, and measure its	
Temperature	resistance variance rate.	
Change)	Testing Condition Lowest Temperature -55 +0/-10°C	
	Highest Temperature 150 +10/-0°C	
	Refer to JIS-C5201-1 4.19	
	Put the tested resistor in chamber and subject to 10	≦±0.5%
Moisture	cycles of damp heat and without power. Each one of	No evidence of mechanical damage
Resistance	which consists of the steps 1 to 7 (Figure 1). Then	
(Climatic	leaving the tested resistor in room temperature for 24 hr,	
Sequence)	and measure its resistance variance rate. Refer to MIL-STD 202 Method 106	
	Put the tested resistor in chamber under 85± 5°C and 85±	≦±1.0%
		No evidence of mechanical damage
Bias Humidity	minutes on, 30 minutes off, total 1,000 hours. Then	
12.2 1 12	leaving the tested resistor in room temperature for 60	
	minutes, and measure its resistance variance rate. Refer to JIS-C5201-1 4.24	
	Relei (U JIO-U02U I- I 4.24	


5.4 Operational Life Endurance:

Test Item	Conditions of Test	Test Limits
	Put the tested resistor in chamber under temperature	≦±1.0%
	70± 2°C and load the rated voltage for 90 minutes on 30	No evidence of mechanical damage
Load Life	minutes off, total 1000 hours. Then leaving the tested	_
Load Lile	resistor in room temperature for 60 minutes, and	
	measure its resistance variance rate.	
	Refer to JIS-C5201-1 4.25	

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep.DATA Center.
	Do not copy without permission	Series No. 60

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No. IE-SP-074
Released Date 2020/07/22
Page No. 8

Remark

IT'S NOT UNDER CONTROL FOR PDF FILE
PLS NOTE THE VERSION STATED..

Do not copy without permission

Issue Dep.DATA Center.

Series No.60

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074				
Released Date	2020/07/22				
Page No.	9				

- **6 Marking Format:** (All the products marking are 4 digits)
 - 6.1 LRE0402 \ LRE0603 \ LRE0805 No Marking.
 - 6.2 LRE1206 series:

Product resistance is indicated by using two marking notation styles:

- a. "R" designates the decimal location in ohms, e.g.
 - For $1m\Omega$ the product marking is R001;
 - For 25mΩ the product marking is R025;
- b. "m" designates the decimal location in milliohms, e.g.
 - For 0.25mΩ the product marking is 0m25;
 - For 0.5mΩ the product marking is 0m50;
 - For $5.5m\Omega$ the product marking is 5m50;
 - For $25.5m\Omega$ the product marking is 25m5.

6.3 Marking Style by Laser:

		,											
Туре	Marking	R	m	1	2	3	4	5	6	7	8	9	0
12	206					ET		B	CO	7		(D)	

 $\langle EX \rangle$ Marking \rightarrow R005 = 5 m Ω

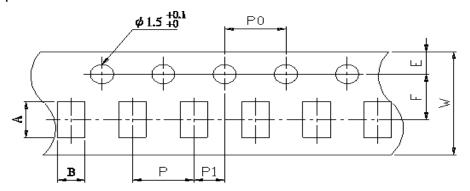
Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
		Series No. 60
	Do not copy without permission	55.135 1 15.5

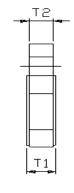
LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074
Released Date	2020/07/22
Page No.	10

7 Plating Thickness:

7.1 Ni : \geq 2 μ m


7.2 Sn(Tin) : $\ge 3 \mu$ m 7.3 Sn(Tin) : Matte Sn


8 Measurement Point:

Bottom electrode			Unit : mm
A	DIM TYPE	Α	В
	LRE0402	0.65±0.05	0.20±0.05
	LRE0603	1.25±0.05	0.30±0.05
Current Terminal	LRE0805	1.65±0.05	0.70±0.05
Voltage Terminal	LRE1206	2.70±0.05	0.40±0.05

9 Taping specifications:

9.1 Tape Dimensions:

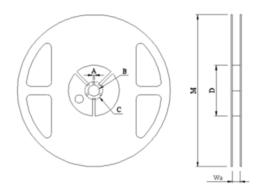
DIRECTION OF FEED

CARRIER TAPE

Unit: mm

Item DIM	Α	В	W	E	F	T1	T2	Р	P0	10*P0	P1
0402	1.15±0.05	0.65±0.05	8.00±0.20	1.75±0.10	3.50±0.05	0.40+0.2/-0	0.40±0.05	2.00±0.10	4.00±0.05	40.0±0.20	2.00±0.05
0603	1.80±0.10	1.00±0.10	8.00±0.20	1.75±0.10	3.50±0.05	0.40+0.2/-0	0.40±0.05	4.00±0.10	4.00±0.10	40.0±0.20	2.00±0.05
0805	2.30±0.10	1.55±0.10	8.00±0.20	1.75±0.10	3.50±0.05	0.40+0.2/-0	0.40±0.05	4.00±0.10	4.00±0.10	40.0±0.20	2.00±0.05
1206	3.50±0.20	1.90±0.20	8.00±0.20	1.75±0.10	3.50±0.05	0.60+0.2/-0	0.60±0.05	4.00±0.10	4.00±0.10	40.0±0.20	2.00±0.05

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
		Series No. 60
	Do not copy without permission	Selles No.


LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

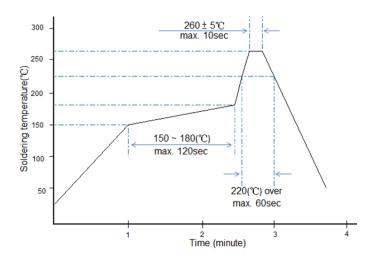
Document No.	IE-SP-074
Released Date	2020/07/22
Page No.	11

9.2 Packaging model:

Typo	Tonovidth	Max. Packaging Quantity (pcs/reel)		
Туре	Tape width	2 mm pitch	4 mm pitch	
0402	8 mm	10,000pcs		
0603	8 mm		5,000pcs	
0805	8 mm		5,000pcs	
1206	8 mm		5,000pcs	

9.3 Reel Dimensions:

Unit: mm


Reel Type / Tape	W	M	Α	В	С	D
7" reel for 8 mm tape	12.00± 0.5	178 ± 1.0	2.0 ± 0.5	13.2 ± 0.5	17.7 ± 0.5	60.0 ± 1.0

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60

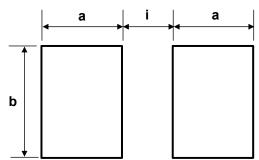
LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074
Released Date	2020/07/22
Page No.	12

- 10 Technical application notes: (This is for recommendation, please customer perform adjustment according to actual application)
 - 10.1 Recommend soldering method:
 - 10.1.1 This product is applicable to IR-reflow process only.(Infrared Reflow)
 - 10.1.2 Typical examples of soldering processes that provides reliable joints without any damage are given in below:

Recommended IR Reflow Soldering Profile MEET J-STD-020D

10.1.3 Soldering Iron: temperature 350°C±10°C, dwell time shall be less than 3 sec.


Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep.DATA Center.
	Do not copy without permission	Series No. 60

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074		
Released Date	2020/07/22		
Page No.	13		

10.2 Recommend Land Pattern:

When a component is soldered, the resistance after soldering changes slightly depending on the size of the soldering area and the amount of soldering. When designing a circuit, it is necessary to consider the effect of a decrease or increase in its resistance.

Туре	Power Rating	Resistance Range (mΩ)	Dimensions - millimeters			
Турс	(Watts)	resistance range (msz)	а	b	i	
	1/6 & 1/5	1.5~5 \ 10	0.65	0.50	0.50	
0402	1/4	3~5 \ 10	0.65	0.50	0.50	
	1/3	10	0.65	0.50	0.50	
0603	1/3	1~ 60	1.00	1.27	0.50	
0003	1/2	2~15	1.00	1.27	0.50	
0805	1/2	1.5 ~ 70	1.45	1.78	0.66	
0605	3/4	1.5 ~ 10	1.45	1.78	0.66	
		1≦R<3			0.60	
1206	1/2 & 1.0	3≦R<4	1.65	2.18	0.90	
		4≦R≦75			1.00	

10.3 The characteristic of Fe/Cr/Al alloy material:

Because of including magnetism, inductor will be generated under high frequency circuit then to cause value shift and influence customer application. If there is related application shall be noted especially or discuss with original factory.

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
		Series No. 60
	Do not copy without permission	Series No.

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074
Released Date	2020/07/22
Page No.	14

10.4 Environment Precautions:

This specification product is for general electronic use, RALEC will not be responsible for any damage, cost or loss caused by using this specification product in any special environment. If other applications need to confirm with RALEC.

If consumer intends to use our Company product in special environment or condition (including but not limited to those mentioned below), then will need to make individual recognition of product features and reliability accordingly.

- (a) Used in high temperature and humidity environment
- (b) Exposed to sea breeze or other corrosive gas, such as Cl2 \ H2S \ NH3 \ SO2 and NO2.
- (c) Used in non-verified liquids including water, oil, chemical and organic solvents.
- (d) Using non-verified resin or other coating material to seal or coat our Company product. After soldering, it is necessary to use water-soluble detergents to clean residual solder fluxes, even though no-clean fluxes are recommended.

10.5 Momentary Overload Precautions:

The product might be out of function when momentary overloaded. Please make sure to avoid momentary overloading while using and preserving.

10.6 Operation and Processing Precautions:

- (a) Avoid damage to the edge of resistor and protective layer caused by mechanical stress.
- (b) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (c) Make sure the power rating is under the limit when using the resistor. When power rating is over the limit, the resister will be overloaded. There might be machinery damage due to the climbing temperature.
- (d) If the resister will be exposed under massive impact load (shock wave) in a short period of time, the working environment must be set up well before use.
- (e) Please make evaluation and confirmation when the product is well used in your company and have a through consideration of it's fail-safe design to ensure the system safety.

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep.DATA Center.
	Do not copy without permission	Series No. 60

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074
Released Date	2020/07/22
Page No.	15

11 Storage and transportation requirement:

- 11.1 The temperature condition must be controlled at 25±5°C, the R.H. must be controlled at 60±15%. The stock can maintain quality level in two years ∘
- 11.2 Please avoid the mentioned harsh environment below when storing to ensure product performance and its' weldability. Places exposed to sea breeze or other corrosive gas, such as Cl2 \ H2S \ NH3 \ SO2 and NO2.
- 11.3 When the product is moved and stored, please ensure the correct orientation of the box. Do not drop or squeeze the box. Otherwise, the electrode or the body of the product may be damaged.

12 Attachments:

12.1 Document Revise Record (QA-QR-027)

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
		Series No. 60
	Do not copy without permission	Series No. 00

LRE Series Metal Alloy Low-Resistance Resistor Product Specifications

Document No.	IE-SP-074
Released Date	2020/07/22
Page No.	16

Legal disclaimer

RALEC, its distributors and agents (collectively, "RALEC"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. RALEC may make changes, modifications and/or improvements to product related information at any time and without notice.

RALEC makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, RALEC disclaims (i) any and all liability arising out of the application or use of any RALEC product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

RALEC defined this product is for general electrical use, not design for any application for automotive electrical, life-saving or life support equipment, or any application which may inflict casualties if RALEC product failure occurred. When consumer is using or selling products of RALEC without having discussion with the sales representatives and specifically stated the applicability mentioned above in a written form, then the client need to take a full responsibility and agree to protect RALEC from punishment and damage.

Information provided here is intended to indicate product specifications only. RALEC reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by ECN.

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep.DATA Center.
Keillaik	Do not copy without permission	Series No. 60

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Current Sense Resistors - SMD category:

Click to view products by RALEC manufacturer:

Other Similar products are found below:

CRL0603-FW-R700ELF PFS35-200RF1 NPS 2-T126 5.000 OHM 1% PFS35-0R01J1 PFS35-0R05J1 PFS35-5RF1 CD2015FC-0.10-1% PR2512FKF7W0R004L RC1005F124CS RL73K3AR56JTDF RL7520WT-R001-F RL7520WT-R009-G RL7520WT-R020-F LRC-LR2512LF-01-R820J WR06X104JGLJ TL2BR01F 65709-330 SP1R12J RL7520WT-R039-G RL7520WT-R002-F LRF2010-R003JW KRL1632E-C-R200-F-T5 KRL1632E-C-R200-F-T1 Y14880R02000B9R RLP73M1ER051FTDF RLP73M2AR075FTDF SR731ERTTP5R10F SR731ERTTP100J SR731ERTTP6R80F SR731ERTTP4R70F SR731ERTTP2R20F SR731ERTTP3R90F SR731ERTTP1R00F SR731ERTTP1R00F SR731ERTTP2R00F SR731ERTTP2R00F SR731ERTTP3R9J SR731ERTTP8R2J SR731ERTTP2R0J SR731ERTTP4R7J SR731ERTTP9R1J SR731ERTTP1R0J SR731ERTTP2R2J SR731ERTTP5R1J SR731ERTTP6R8J SR731ERTTP9R10F RCWE2512R180FKEA FCSL64R007JER LRF1206-R018FW TLR2B10DR022FTDG