RAYSTAR

SPECIFICATION

Page 1, Total 27 Pages

OLED SPECIFICATION

Model No:

REX012864MXPP3N00000

CUSTOMER:

APPROVED BY			
PCB VERSION			
DATE			
FOR CUSTOMER USE	ONLY		
SALES BY	APPROVED BY	CHECKED BY	PREPARED BY
			1000000000

APPROVAL FOR SPECIFICATIONS ONLY

APPROVAL FOR SPECIFICATIONS AND SAMPLE

1. Revision History

VERSION	DATE	REVISED PAGE NO.	Note
0	2015/07/30		First release
A	2015/10/27		Modify Operating Life Time.
В	2016/06/01		Modify Static electricity test
С	2018/02/08		Modify Reliability test Condition
D	2018/11/27		Modify Static electricity test Content of Test

Contents

- 1. General Specification
- 2.Module Classification Information
- 3.Interface Pin Function
- 4.Contour Drawing & Block Diagram
- 5. Absolute Maximum Ratings
- **6.**Electrical Characteristics
- 7.Optical Characteristics
- 8.OLED Lifetime
- 9.Reliability
- 10.Inspection specification
- 11.Precautions in use of OLED Modules

1.General Specification

The Features is described as follow:

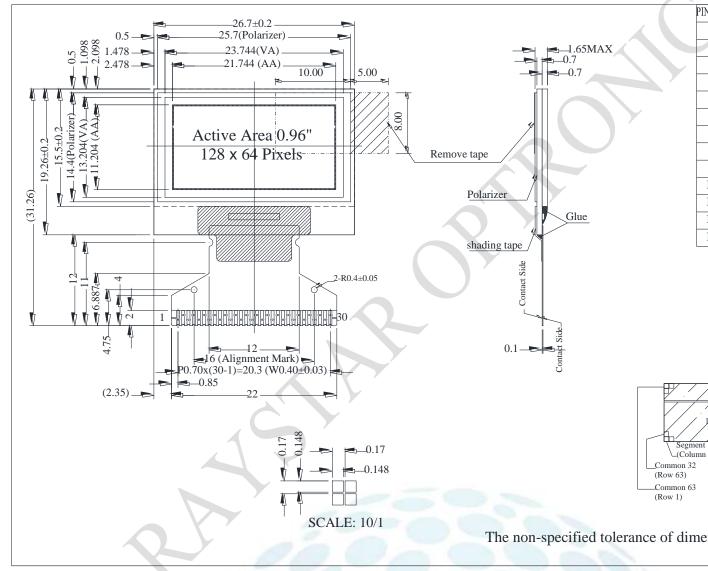
- Dot Matrix: 128 x 64 Dots
- Module dimension: 26.70 x 19.26 x 1.65 mm
- Active Area: 21.744 x 11.204 mm
- Pixel Size: 0.148 x 0.148 mm
- Pixel Pitch: 0.17 x 0.17 mm
- Display Mode: Passive Matrix
- Display Color: Yellow / SkyBlue
- Drive Duty: 1/64 Duty
- IC: SSD1306
- Interface: 6800,8080,SPI,I2C
- Size: 0.96 inch

2.Module Classification information

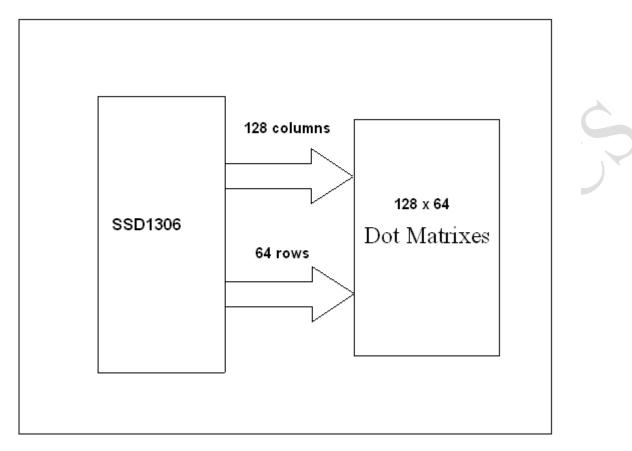
1	2	3	4	5	6	7	8	9	10	11	12	13	14
R	E	Х	012864	Μ	Х	Р	Р	3	Ν	0	0	0	00

1	Brand : Raysta	r Optronics Inc.					
2	E : OLED						
3	Display Type	C : COB Character X : COG P : COG + FR + PCB		COB Graphic COG + FR TAB			
4	Dot Matrix: 1	A : COG + PCB 28*64)			
4 5	Series	20 04					
6	Emitting Color	B : Blue W : G : Green Y :	Red White Yellow Dual Color	C : Full Color			
7	Polarizer	P : With Polarizer; N: W A : Anti-glare Polarizer	P : With Polarizer; N: Without Polarizer A : Anti-glare Polarizer				
8	Display Mode		Active Matrix				
9	Driver Voltage	3:3.0~3.3V ; 5:5.0					
10	Touch Panel	N : Without touch panel	; T: With touch pa	anel			
11	Product type	0 : Standard 1 : Daylight Readable 2 : Transparent OLED (3 : Flexible OLED (FOL 4 : OLED Lighting	,				
12	Inspection Gra	Y : Consumer grade					
13	Option	0 : Default ; F : ZIF FPC	C;H [∶] Hot bar FF	PC; D : Demo Kit			
14	Serial No.	Serial number(00~ZZ)		1000000			

3.Interface Pin Function


No.	Symbol	Function					
	-	Reserved Pin (Supporting Pin)					
1	N.C.	The supporting pins can reduce the influences from stresses on the					
	(GND)	function pins. These pins must be connected to external ground.					
2	C2N	Positive Terminal of the Flying Inverting Capacitor Negative Terminal of					
3	C2P	the Flying Boost Capacitor The charge-pump capacitors are required					
4	C1P	between the terminals. They must be floated when the converter is not					
5	C1N	used.					
		Power Supply for DC/DC Converter Circuit					
6	VBAT	This is the power supply pin for the internal buffer of the DC/DC voltage					
0	VDAT	converter. It must be connected to external source when the converter is					
		used. It should be connected to VDD when the converter is not used.					
7	NC	NC					
		Ground of Logic Circuit					
8	VSS	This is a ground pin. It acts as a reference for the logic pins. It must be					
		connected to external ground.					
9	VDD	Power Supply for Logic					
0	100	This is a voltage supply pin. It must be connected to external source.					
		Communicating Protocol Select					
10	BS0	These pins are MCU interface selection input. See the					
		following table:					
11	BS1	BS0 BS1 BS2 I2C 0 1 0					
	001	I2C 0 1 0 3-wire SPI 1 0 0					
		4-wire SPI 0 0 0					
12	BS2	8-bit 68XX Parallel 0 0 1					
		8-bit 80XX Parallel 0 1 1					
		Chip Select					
13	CS#	This pin is the chip select input. The chip is enabled for MCU					
		communication only when CS# is pulled low.					
		Power Reset for Controller and Driver					
14	RES#	This pin is reset signal input. When the pin is low, initialization of the					
		chip is executed.					
		Data/Command Control					
		This pin is Data/Command control pin. When the pin is pulled high, the					
	1	input at D7~D0 is treated as display data.					
		When the pin is pulled low, the input at D7~D0 will be transferred to the					
15	D/C#	command register. For detail relationship to MCU interface signals,					
		please refer to the Timing Characteristics Diagrams.					
		When the pin is pulled high and serial interface mode is selected, the data at SDIN is treated as data. When it is pulled low, the data at SDIN					
		will be transferred to the command register. In I2C mode, this pin acts as					
		SA0 for slave address selection.					
<u>l</u>	1						
		V.0					
		Page 7, Total 27 Pages					

16	R/VV#	Read/Write Select or Write This pin is MCU interface input. When interfacing to a 68XX-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Pull this pin to "High" for read mode and pull it to "Low" for write mode. When 80XX interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled low and the CS# is pulled low.
17		Read/Write Enable or Read This pin is MCU interface input. When interfacing to a 68XX-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled high and the CS# is pulled low. When connecting to an 80XX-microprocessor, this pin receives the Read (RD#) signal. Data read operation is initiated when this pin is pulled low and CS# is pulled low.
18~25		Host Data Input/Output Bus These pins are 8-bit bi-directional data bus to be connected to the microprocessor's data bus. When serial mode is selected, D1 will be the serial data input SDIN and D0 will be the serial clock input SCLK. When I2C mode is selected, D2 & D1 should be tired together and serve as SDAout & SDAin in application and D0 is the serial clock input SCL.
26	IREF	Current Reference for Brightness Adjustment This pin is segment current reference pin. A resistor should be connected between this pin and VSS. Set the current lower than 12.5µA.
27	VCOMH	Voltage Output High Level for COM Signal This pin is the input pin for the voltage output high level for COM signals. A capacitor should be connected between this pin and VSS.
28		Power Supply for OEL Panel This is the most positive voltage supply pin of the chip. A stabilization capacitor should be connected between this pin and VSS when the converter is used. It must be connected to external source when the converter is not used.
29	VLSS	Ground of Analog Circuit This is an analog ground pin. It should be connected to VSS externally.
30		Reserved Pin (Supporting Pin) The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground.


4.Contour Drawing & Block Diagram

Page 9, Total 27 Pages

FUNCTION BLOCK DIAGRAM

*For more information, please refer to Application Note provided by Raystar Optronics.

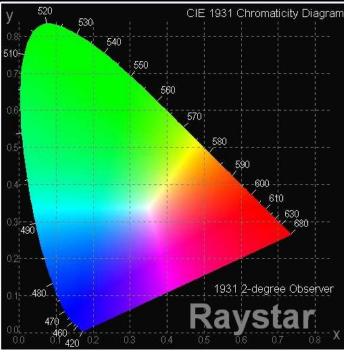
Page 10, Total 27 Pages

5.Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Supply Voltage for Logic	VDD	0	3.3	V	1,2
Supply Voltage for Display	VCC	0	15.0	V	1,2
Operating Temperature	TOP	-40	+80	°C	
Storage Temperature	TSTG	-40	+85	°C	

Note 1: All the above voltages are on the basis of "VSS = 0V".

Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 6. "Optics & Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate.


6.Electrical Characteristics

ltem	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage for Logic	VDD	_	2.8	3.0	3.3	V
Supply Voltage for Display	VCC	_	11.5	12.0	12.5	V
Input High Volt.	VIH	_	0.8×VDD	_	VDDIO	V
Input Low Volt.	VIL	_	0		0.2×VDD	V
Output High Volt.	VOH	_	0.9×VDD		VDDIO	V
Output Low Volt.	VOL	_	0		0.1×VDD	V
50% Check Board operating Current	ICC	Vcc =12.0V	9.0	10.0	12.0	mA

7.Optical Characteristics

Item	Symbol	Condition	Min	Тур	Мах	Unit
	θ(V)	_	160	_	-	deg
View Angle	(H)φ	_	160			deg
Contrast Ratio	CR	Dark	2000:1	_	_	
Dooponoo Timo	T rise	_		10		μs
Response Time	T fall	_		10	Y	μs
Display with 50% che	eck Board Brig	ghtness	60	80	_	cd/m2
CIEx(Yello	w)	(CIE1931)	0.45	0.47	0.49	—
CIEy(Yello	(CIE1931)	0.48	0.50	0.52	—	
CIEx(SkyBl	(CIE1931)	0.12	0.16	0.20	—	
CIEy(SkyBl	(CIE1931)	0.22	0.26	0.30	_	

8.OLED Lifetime

ITEM	Conditions	Min	Тур	Remark
Operating Life Time	Ta=25°C / Initial 50% check board brightness Typical Value	20,000 Hrs	-	Note

Notes:

- 1. Life time is defined the amount of time when the luminance has decayed to <50% of the initial value.
- 2. This analysis method uses life data obtained under accelerated conditions to extrapolate an estimated probability density function (*pdf*) for the product under normal use conditions.
- 3. Screen saving mode will extend OLED lifetime.

9.Reliability

Content of Reliability Test

Test Item	Content of Test	Test Condition	Applicable Standard
High Temperature storage	Endurance test applying the high storage temperature for a long time.	85°C 240hrs	
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-40°C 240hrs	
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	80°C 240hrs	1
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-40°C 240hrs	
High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	60°C,90%RH 240hrs	
High Temperature/ Humidity Operation	Endurance test applying the high temperature and high humidity Operation for a long time.	60°C,90%RH 120hrs	
Temperature Cycle	Endurance test applying the low and high temperature cycle. -40°C 25°C 80°C 30min <u>5min 30min</u>	-40°C /80°C 30 cycles	200
Mechanical Te	st C	000	
Vibration test	Endurance test applying the vibration during transportation and using.	Frequency:10~55Hz amplitude:1.5mm Time:0.5hrs/axis Test axis:X,Y,Z	- 2.
Others	7		
Static electricity test	Endurance test applying the electric stress to the finished product housing.	Air Discharge model ±4kv,10 times	

*** Supply voltage for OLED system =Operating voltage at 25°C

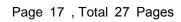
Test and measurement conditions

- 1. All measurements shall not be started until the specimens attain to temperature stability. After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23±5°C; 55±15% RH.
- 2. All-pixels-on is used as operation test pattern.
- 3. The degradation of Polarizer are ignored for High Temperature storage, High Temperature/ Humidity Storage, Temperature Cycle

Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: > 50% of initial value.
- 4. Current consumption: within \pm 50% of initial value.

APPENDIX:


RESIDUE IMAGE

Because the pixels are lighted in different time, the luminance of active pixels may reduce or differ from inactive pixels. Therefore, the residue image will occur. To avoid the residue image, every pixel needs to be lighted up uniformly.

10.Inspection specification

NO	Item		Criterion		AQL	
01	Electrical Testing	 1.1 Missing vertical, horizontal segment, segment contrast defect. 1.2 Missing character, dot or icon. 1.3 Display malfunction. 1.4 No function or no display. 1.5 Current consumption exceeds product specifications. 1.6 OLED viewing angle defect. 1.7 Mixed product types. 1.8 Contrast defect. 				
02	Black or white spots on OLED (display only)	 2.1 White and black spots on display ≤0.25mm, no more than three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm. 				
03	OLED black spots, white spots, contamin ation (non- display)	3.1 Round type : As following drawing $\Phi = (x + y) / 2$	$\begin{array}{c} SIZE \\ \Phi \leq 0.10 \\ 0.10 < \Phi \leq 0.20 \\ 0.20 < \Phi \leq 0.25 \\ 0.25 < \Phi \end{array}$	Acceptable QTY Accept no dense 2 1 0	2.5	
		3.2 Line type : (As following Length L≦3.0 L≦2.5 	Width W \leq 0.02 0.02 <w<math>\leq0.03</w<math>	Acceptable Q TY Accept no dense 2 As round type	2.5	
04	Polarizer bubbles	If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.	Size Φ $\Phi \leq 0.20$ $0.20 < \Phi \leq 0.50$ $0.50 < \Phi \leq 1.00$ $1.00 < \Phi$ Total Q TY	Acceptable Q TY Accept no dense 3 2 0 3 3	2.5	
05	Scratches	Follow NO.3 OLED black sp	ots, white spots, co	ontamination.	.20	
<u> </u>	ı	1 -		10000		

NO	Item				AQL
		Symbols Define: x: Chip length y: Chip width z: Chip thickness k: Seal width t: Glass thickness a: OLED side length L: Electrode pad length: 6.1 General glass chip : 6.1.1 Chip on panel surface and crack between panels:			
06	Chipped glass	z: Chip thickness $Z \le 1/2t$ $1/2t < z \le 2t$ \odot If there are 2 or mo6.1.2 Corner crack:	y: Chip width Not over viewing area Not exceed 1/3k re chips, x is total lengt	x≦1/8a	2.5
		z: Chip thickness $Z \leq 1/2t$ $1/2t < z \leq 2t$ \bigcirc If there are 2 or model	y: Chip width Not over viewing area Not exceed 1/3k re chips x is the total le	x≦1/8a	
If there are 2 or more chips, x is the total length of each Symbols : x: Chip length y: Chip width x: Chip length y: Chip width x: Seal width t: Glass thickness k: Seal width t: Glass thickness L: Electrode pad length 6.2 Protrusion over terminal : 6.2.1 Chip on electrode pad : Y: Chip width y: Chip width x: Chip length z: Chip thicknest y: Chip width x: Chip length z: Chip thicknest				ip thickness DLED side length	2.5
		y≦0.5mm	x≦1/8a	$0 < z \leq t$	

NO	Item	Criterion	AQL	
06	Glass crack	6.2.2 Non-conductive portion: i j k j j j j j j j k j j j j j j j k j j k j k	2.5	
07	Cracked glass	The OLED with extensive crack is not acceptable.		
08	Backlight elements	 8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using OLED spot, lines and contamination standards. 8.3 Backlight doesn't light or color wrong. 		
09	Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination.9.2 Bezel must comply with job specifications.	2.5 0.65	

NO	Item	Criterion	AQL
		10.1 COB seal may not have pinholes larger than 0.2mm or contamination.	2.5
		10.2 COB seal surface may not have pinholes through to the IC.	2.5 0.65
		10.3 The height of the COB should not exceed the height indicated in the assembly diagram.	2.5
		10.4 There may not be more than 2mm of sealant outside the seal area on the PCB. And there should be no more than	2.5
10	PCB , COB	three places.	2.5
		 10.5 No oxidation or contamination PCB terminals. 10.6 Parts on PCB must be the same as on the production 	0.65
		characteristic chart. There should be no wrong parts, missing parts or excess parts. 10.7 The jumper on the PCB should conform to the product	0.65
		characteristic chart.	2.5
		10.8 If solder gets on bezel tab pads, OLED pad, zebra pad or screw hold pad, make sure it is smoothed down.	
		11.1 No un-melted solder paste may be present on the PCB.	2.5
11	Soldering	11.2 No cold solder joints, missing solder connections, oxidation or icicle.	2.5
		11.3 No residue or solder balls on PCB.	2.5
		11.4 No short circuits in components on PCB.	0.65
		12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP.	2.5
	General appearance	12.2 No cracks on interface pin (OLB) of TCP.	0.65
		12.3 No contamination, solder residue or solder balls on product.	2.5
		12.4 The IC on the TCP may not be damaged, circuits.	2.5
12		12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it cause the interface pin to sever.	2.5
		12.6 The residual rosin or tin oil of soldering (component or chip component) is not burned into brown or black color.	2.5
		12.7 Sealant on top of the ITO circuit has not hardened.	2.5
	7	12.8 Pin type must match type in specification sheet.12.9 OLED pin loose or missing pins.	0.65 0.65
		12.10 Product packaging must the same as specified on packaging specification sheet.	0.65
		12.11 Product dimension and structure must conform to product specification sheet.	0.65

Page 21, Total 27 Pages

	Check Item	Classification	Criteria
Pixel Short Major Darker Short Major Wrong Display Major Un-uniform Major	No Display	Major	
Darker Short Major Wrong Display Major	Missing Line	Major	
Wrong Display Major	Pixel Short	Major	
Un-uniform B/A x 100% < 70% Major	Darker Short	Major	
B/A x 100% < 70% Major	Wrong Display	Major	
B Dack Pix	Un-uniform B/A x 100% < 70% A/C x 100% < 70%	Major	B Dark Pixel

11.Precautions in use of OLED Modules

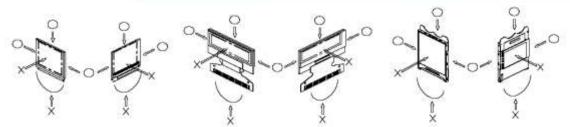
(1) Avoid applying excessive shocks to module or making any alterations or modifications to it.

- (2) Don't make extra holes on the printed circuit board, modify its shape or change the components of OLED display module.
- (3) Don't disassemble the OLED display module.
- (4) Don't operate it above the absolute maximum rating.
- (5) Don't drop, bend or twist OLED display module.
- (6) Soldering: only to the I/O terminals.
- (7) Storage: please storage in anti-static electricity container and clean environment.
- (8) It's pretty common to use "Screen Saver" to extend the lifetime and Don't use fix information for long time in real application.
- (9) Don't use fixed information in OLED panel for long time, that will extend "screen burn" effect time.
- (10) Raystar has the right to change the passive components, including R2and R3 adjust resistors. (Resistors, capacitors and other passive components will have different appearance and color caused by the different supplier.)

(11) Raystar have the right to change the PCB Rev. (In order to satisfy the supplying stability, management optimization and the best product performance...etc, under the premise of not affecting the electrical characteristics and external dimensions, Raystar have the right to modify the version.)


11.1 Handling Precautions

- (1) Since the display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position.
- (2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance.
- (3) If pressure is applied to the display surface or its neighborhood of the OLED display module, the cell structure may be damaged and be careful not to apply pressure to these sections.
- (4) The polarizer covering the surface of the OLED display module is soft and easily scratched. Please be careful when handling the OLED display module.
- (5) When the surface of the polarizer of the OLED display module has soil, clean the surface. It takes advantage of by using following adhesion tape.


* Scotch Mending Tape No. 810 or an equivalent

Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent Also, pay attention that the following liquid and solvent may spoil the polarizer:

- * Water
- * Ketone
- * Aromatic Solvents
- (6) Hold OLED display module very carefully when placing OLED display module into the System housing. Do not apply excessive stress or pressure to OLED display module. And, do not over bend the film with electrode pattern layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases.

- (7) Do not apply stress to the LSI chips and the surrounding molded sections.
- (8) Do not disassemble nor modify the OLED display module.
- (9) Do not apply input signals while the logic power is off.
- (10) Pay sufficient attention to the working environments when handing OLED display modules to prevent occurrence of element breakage accidents by static electricity.
- * Be sure to make human body grounding when handling OLED display modules.
- * Be sure to ground tools to use or assembly such as soldering irons.
- * To suppress generation of static electricity, avoid carrying out assembly work under dry environments.
- * Protective film is being applied to the surface of the display panel of the OLED display module. Be careful since static electricity may be generated when exfoliating the protective film.
- (11) Protection film is being applied to the surface of the display panel and removes the protection film before assembling it. At this time, if the OLED display module has been stored surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5.
- (12) If electric current is applied when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above.

11.2 Storage Precautions

- (1) When storing OLED display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps. And, also, avoiding high temperature and high humidity environment or low temperature (less than 0°C) environments.(We recommend you to store these modules in the packaged state when they were shipped from Raystar Optronics Inc. At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them.
- (2) If electric current is applied when water drops are adhering to the surface of the OLED display module, when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above.

11.3 Designing Precautions

- (1) The absolute maximum ratings are the ratings which cannot be exceeded for OLED display module, and if these values are exceeded, panel damage may be happen.
- (2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible.
- (3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A)

(4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices.

- (5) As for EMI, take necessary measures on the equipment side basically.
- (6) When fastening the OLED display module, fasten the external plastic housing section.
- (7) If power supply to the OLED display module is forcibly shut down by such errors as taking out the main battery while the OLED display panel is in operation, we cannot guarantee the quality of this OLED display module. Connection (contact) to any other potential than the above may lead to rupture of the IC.
- (8) The limitation of FPC and Film bending.

Display area	Min 2mm		3	
		R = 1.5mm		
19				
			100	100
			100	0
	Dago 25 T	tal 27 Dagaa	1/4	

		Page: 1
<u>Modu</u>	<u>le Sample</u>	Estimate Feedback Sheet
Module Number :		
1 • Panel Specification :		
1. Panel Type:	Pass	□NG ,
2. Numbers of Pixel :	Pass	□NG ,
3. View Area :	Pass	□NG ,
4. Active Area :	Pass	□NG ,
5.Emitting Color :	Pass	□NG ,
6.Uniformity :	□Pass	□NG ,
7.Operating Temperature :	Pass	□NG ,
8.Storage Temperature :	Pass	□NG ,
9.Others :		
2 · Mechanical Specificat	ion :	
1. PCB Size :	□Pass	□NG ,
2.Frame Size :	□Pass	□NG ,
3.Materal of Frame :	□Pass	□NG ,
4.Connector Position :	□Pass	□NG ,
5.Fix Hole Position :	□Pass	□NG ,
6. Thickness of PCB :	□Pass	□NG ,
7. Height of Frame to PCB :	□Pass	□NG ,
8.Height of Module :	□Pass	□NG ,
9.Others :	□Pass	□NG ,
3 · Relative Hole Size :		
1.Pitch of Connector :	□Pass	□NG ,
2.Hole size of Connector :	□Pass	□NG ,
3.Mounting Hole size :	□Pass	□NG ,
4.Mounting Hole Type :	□Pass	□NG ,
5.Others :	□Pass	□NG ,

>> Go to page 2 <<

		Page:
Module Number :		
4 · Electronic Characteris	<u>tics of Mod</u>	
1.Input Voltage:	□Pass	DNG ,
2.Supply Current :	□Pass	□NG ,
3.Driving Voltage for OLED :	□Pass	□NG ,
4.Contrast for OLED :	□Pass	DNG ,
5.Negative Voltage Output :	□Pass	□NG ,
6.Interface Function :	□Pass	DNG ,
7.ESD test :	□Pass	□NG ,
8.Others :	□Pass	□NG ,
5 ` <u>Summary</u> :	Q	OP CP

Sales signature:____ Customer Signature:_

Date: /

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Displays & Accessories category:

Click to view products by Raystar manufacturer:

Other Similar products are found below :

LTC-2721WC LTC-4624JD LTC-4627G LTC-4627WC LTD-5021AWC LTM-8522G LTP-4323P LTP-747G LTS-3361JG-06 F416SYGWA/S530-E3 EADST040RA2 1668 HT-F196NB-5323 IPD2131-27 SA03-12EWA LDD-E2802RD LDD-E306MI LDQ-N514RI LDS-A3506RD LDS-A3926RI LDT-M516RI SC03-12HDB SI-B9T151550WW SI-B9V171550WW SLC-3PF-WL 1624 LTC-2621JD LTC-2623WC LTC-4624P LTC-4627JD LTD-2601E LTD-2601P LTD-322G LTD-482PC LTP-1457AKR LTP-3784G-01 LTS-313AP LTS-4812SKR-P LTS-547AE LTS-6780P 446010401-3 HV-7W30-6829 CA12240_MINNIE-WWW-MTG-ASSY DA43-11GWA LDD-A516RI-17 LDD-E305RI LDQ-M513RI LDQ-M5204RI-SI LDQ-N3402RI LDQ-N3606RI