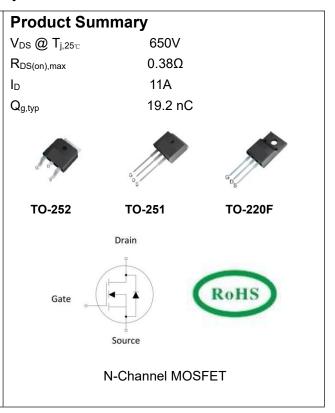


N-channel 650V, 11A, 0.38Ω Super-Junction Power MOSFET

Description


Super-junction power MOSFET is a revolutionary technology for high voltage power MOSFET, designed according to the SJ principle. The resulting device has extremely low on resistance, making it especially suitable for applications which require superior power density and outstanding efficiency.

Features

- Very low FOM RDS(on)×Qg
- 100% UIS tested
- RoHS compliant

Applications

- ◆ Power factor correction (PFC).
- Switched mode power supplies (SMPS).
- Uninterrupted power supply (UPS).

Marking information

Product	Package	Marking	Packing methed
RMA65R380SN	TO-252	RMA65R380SN	Reel
RMG65R380SN	TO-251	RMG65R380SN	Tube
RMC65R380SN	TO-220F	RMC65R380SN	Tube

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	650	V
Continuous drain current (T _C = 25°C)	I _D	11	А
(T _C = 100°C)		7	Α
Pulsed drain current 1)	I _{DM}	33	А
Gate-Source voltage	V _{GSS}	±30	V
Avalanche energy, single pulse 2)	E _{AS}	210	mJ
Avalanche current, repetitive 3)	I _{AR}	1.6	А
Power Dissipation TO-252 /TO-251 ($T_C = 25^{\circ}C$)	Б	118	W
- Derate above 25°C	P _D	0.94	W/°C
Power Dissipation TO-220F (T _C = 25°C)		33	W
- Derate above 25°C	P _D	0.26	W/°C
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C
Continuous diode forward current	Is	11	А

RMA65R380SN/RMG65R380SN/RMC65R380SN

		Shaanxi Reactor	Microelectronics
Diode pulse current	I _{S,pulse}	33	А

Thermal Characteristics

Parameter	Symbol	Value		Unit
		TO252/TO-251	TO-220F	
Thermal Resistance, Junction-to-Case	Rejc	1.32	3.6	°C/W
Thermal Resistance, Junction-to-Ambient	R _{0JA}	87	62	°C/W
Soldering temperature, wave soldering only allowed	_	260	260	°C
at leads. (1.6mm from case for 10s)	Isold	260	260	C

Electrical Characteristics To = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	650	-	-	V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	2.5		4.0	V
Drain cut-off current	I _{DSS}	V _{DS} =650 V, V _{GS} =0 V,				μΑ
		T _j = 25°C	-	-	1	
		T _j = 125°C	-	10		
Gate leakage current, Forward	I _{GSSF}	V _{GS} =30 V, V _{DS} =0 V	-	-	100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-30 V, V _{DS} =0 V	-	-	-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =5.5 A	-			
		T _j = 25°C	-	0.34	0.38	Ω
			-			
Dynamic characteristics			·			
Input capacitance	Ciss	V _{DS} = 100 V, V _{GS} = 0 V,	-	852	-	
Output capacitance	Coss	f = 1MHz	-	37	-	pF
Reverse transfer capacitance	C _{rss}		-	2.0	-	
Turn-on delay time	t _{d(on)}	V _{DD} = 400V, I _D =5.5A	-	16.3	-	
Rise time	t _r	$R_G = 25\Omega$, $V_{GS}=10V$	-	35	-	ns
Turn-off delay time	t _{d(off)}		-	78	-	
Fall time	t _f		-	39.5	-	
Gate charge characteristics	<u>'</u>	I	'	1	'	
Gate to source charge	Q _{gs}	V _{DD} =520 V, I _D =5.5A,	-	3.1	-	
Gate to drain charge	Q _{gd}	V _{GS} =0 to 10 V	-	8.2	-	nC
Gate charge total	Qg	-	-	19.2	-	
Gate plateau voltage	V _{plateau}		-	5.5	-	V
Reverse diode characteristics	'	1	'			
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =5.5A	-	0.85	-	V
Reverse recovery time	t _{rr}	V _R =400 V, I _F =5.5A,	-	310	-	ns
Reverse recovery charge	Qrr	dl _F /dt=100 A/µs	-	2.8	-	μC
Peak reverse recovery current	I _{rrm}	1	-	16.8	-	Α

RMA65R380SN/RMG65R380SN/RMC65R380SN

Shaanxi Reactor Microelectronics

Notes:

1. Limited by maximum junction temperature, maximum duty cycle is 0.75.

2. I_{AS} = 3A, V_{DD} = 50V, Starting T_j = 25°C.

Electrical Characteristics Diagrams

Figure 1. Output Characteristics 32 20V 28 10V 8V 24 **7**V Drain current I_D (A) 6V 20 5.5V 5V 16 4.5V 12 8 4 0 0 5 10 15 20 Drain-source voltage V_{DS} (V)

Shaanxi Reactor Microelectronics

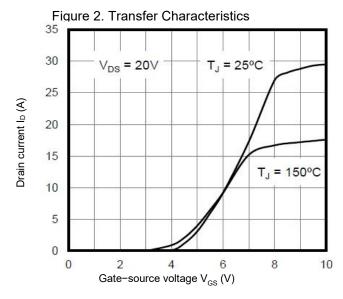


Figure 3. On-Resistance vs. Drain Current

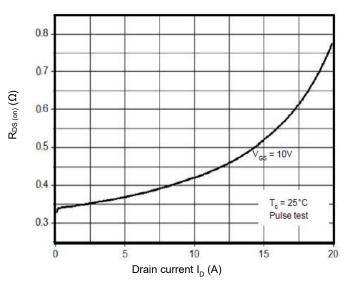
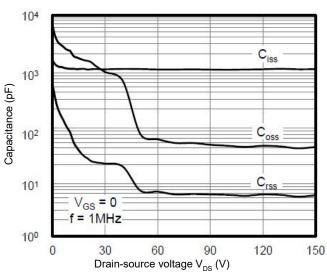
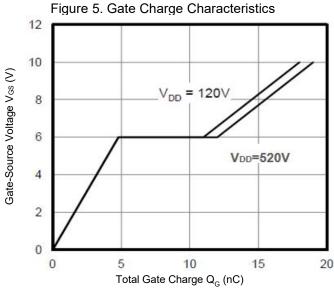
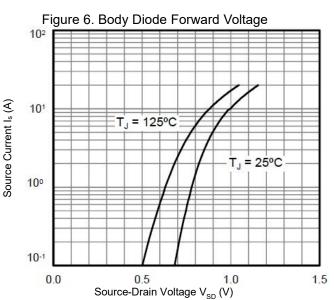
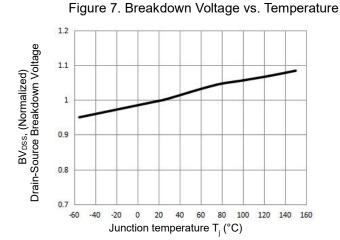





Figure 4. Capacitance Characteristics



www.reactor-micro.com **Rev 1.0**

Figure 8. On-Resistance vs. Temperature

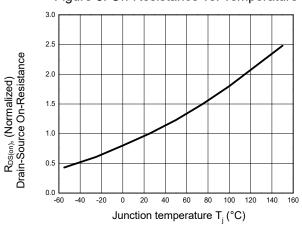
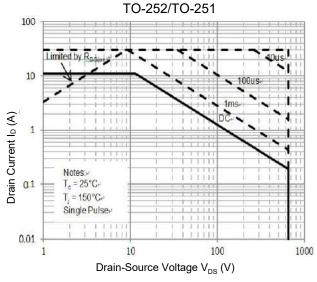
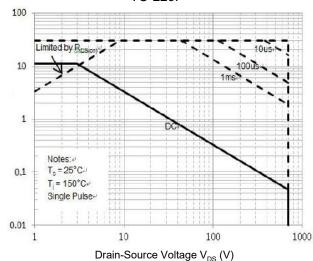
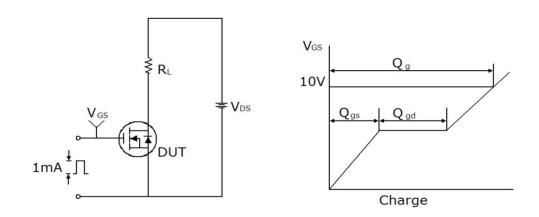
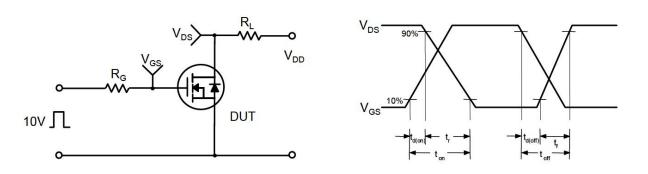




Figure 9. Maximum Safe Operating Area

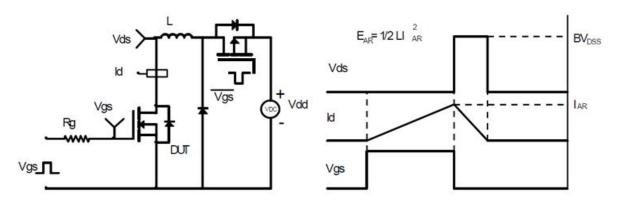
Figure 10. Maximum Safe Operating Area TO-220F


Rev 1.0 www.reactor-micro.com

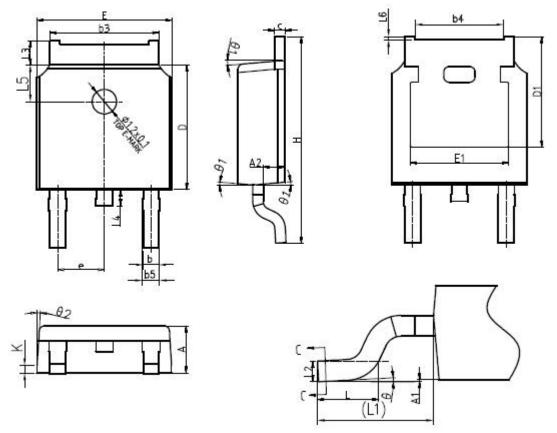
Drain Current I_D (A)



Test Circuits

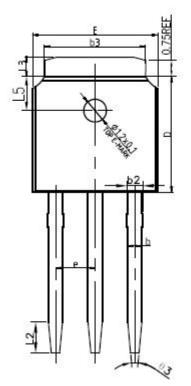

Gate Charge Test Circuit & Waveform

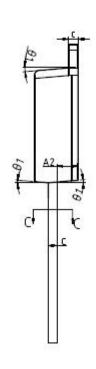
Switching Test Circuit & Waveform

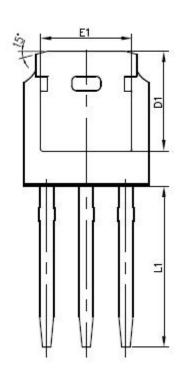


Unclamped Inductive Switching Test Circuit & Waveform

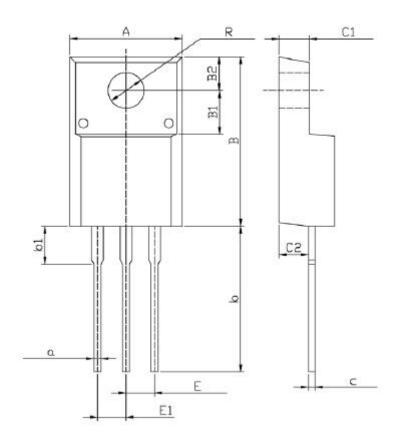
Mechanical Dimensions for TO-252


单位: mm


		mm	E.
SYMBOL	MIN	NOM	MAX
*A	2. 20	2. 30	2. 38
*A1	0.00	(57)	0.10
A2	0.97	1.07	1. 17
*b	0.72	0.78	0.85
b1	0.71	0.76	0.81
*b3	5. 23	5. 33	5. 46
b4	4.27	4.32	4. 37
b5	0.72	0.88	0.93
*c	0.47	0. 53	0.58
c1	0.46	0. 51	0.56
*D	6.00	6. 10	6. 20
D1		5. 30REF	(2) - 1


*E	6.50	6.60	6.70	
E1	4.70	4.83	4.92	
*e		2. 286BSC		
L	1.40	1.50	1.70	
L1	Î	2. 90REF		
L2		0.51BSC	100	
*L3	0.90	20	1.25	
*L4	0.60	0.80	1.00	
L5	1.70	1.80	1.90	
L6	0	0.047	0.123	
θ	0°		8°	
* 01	5°	7°	9°	
0.2	5°	7°	9°	
K	0. 40REF			

Mechanical Dimensions for TO-251



CVIUDOI	5)	MM	
SYMBOL	MIN	NOM	MAX
*A	2. 20	2.30	2.38
*A2	0.97	1.07	1. 17
*b	0.72	0.78	0.85
b1	0.71	0.76	0.81
*b2	0.72	0.88	0.95
*b3	5. 23	5.33	5.46
*c	0.47	0.53	0.58
c1	0.46	0.51	0.56
*D	6.00	6.10	6. 20
D1	o services	5. 30REF	
*E	6.50	6.60	6.70
E1	4.70	4.83	4.92
*e	35	2. 286BSC	
*L1	9. 20	9.40	9.60
L2	1. 25	1.35	1.45
*L3	0.90	1.02	1.25
L5	1.70	1.80	1.90
*01	5°	7°	9°
02	5°	7°	9°
03	11°	13°	15°
K		0. 40REF	

Mechanical Dimensions for TO-220F

Symbol	Dimensions In Millimeters			Dimensions In Millineters	
Symbol	Min Max Symbol	Min	Max		
С	4.3	4.7	b1	2.9	3.9
Α	9.7	10.3	a	0.55	0.75
В	14.7	15.3	E	2.29	2.79
B1	3.8	4.0	E1	2.29	2.79
B2	2,9	3.1	C1	2.5	2.9
R	3.0	3.4	CS	2.5	2.7
b	12.5	13.5	С	0.5	0.7

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Reactor-Micro manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 IRFF430 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ AOD464 2SK2267(Q) 2SK2545(Q,T)

405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C PSMN4R2-30MLD

TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7

NTE2384 NTE2969 NTE6400A DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7

BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IRF40SC240ARMA1 IPS60R1K0PFD7SAKMA1

IPS60R360PFD7SAKMA1 IPS60R600PFD7SAKMA1