Features

Switching

Regulator

- Designed for 12V 60V battery-powered apps
- Wide input range (6.5V 72V)
- 100V surge withstand

• -40°C to +105°C operation at 48V input, full load

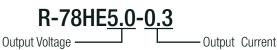
- Short circuit protected
- Efficiency up to 83%, no need for heatsinks

Description

The R-78HE-5.0-0.3 is a low cost switching regulator module in a compact SIP3 package that has been specially designed for battery-powered use, but will find many other high input voltage applications. The exceptionally wide input voltage and operating temperature range, high MTBF (15 mio. hrs), tight regulation and low quiescent current consumption makes this converter ideal for 36V/48V lithium-ion and 12V/24V/48V lead-acid battery-powered applications. The 100V surge withstand capability means that external voltage clamping circuits can be eliminated and only a simple LC filter is needed for Class A and B EMC conformity.

Single	e Outpu
	Martin
	R-78HE-0.3

Selection Guide									
Part Number	Input Voltage Range [VDC]	Output Voltage [VDC]	Output Current [mA]	Efficie @ min. Vin [%]	ency ⁽¹⁾ @ max. Vin [%]	Max. Capacitive Load ⁽²⁾ [µF]			
R-78HE5.0-0.3	6.5 - 72	5	300	83	72	470			
Nat									


Notes:

Note1: Efficiency is tested at full load at +25°C ambient

Note2: Max. Cap Load is tested at nominal input and constant resistive load

Model Numbering

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

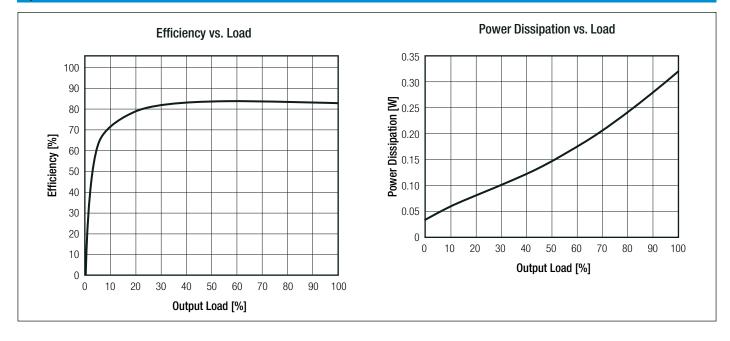
Parameter	Condition	Min.	Тур.	Max.
Internal Input Filter				capacitor
Input Voltage Range	nom. Vin= 24VDC	6.5VDC		72VDC
Input Surge Voltage	100ms max.			100VDC
Quiescent Current			1.5mA	3mA
Linder Veltage Leekeut	DC-DC ON		5.3VDC	
Under Voltage Lockout	DC-DC OFF		5.1VDC	
Minimum Load		0%		
Internal Operating Frequency	nom. Vin= 24VDC		135kHz	
Output Ripple and Noise (3)	20MHz BW			150mVp-p

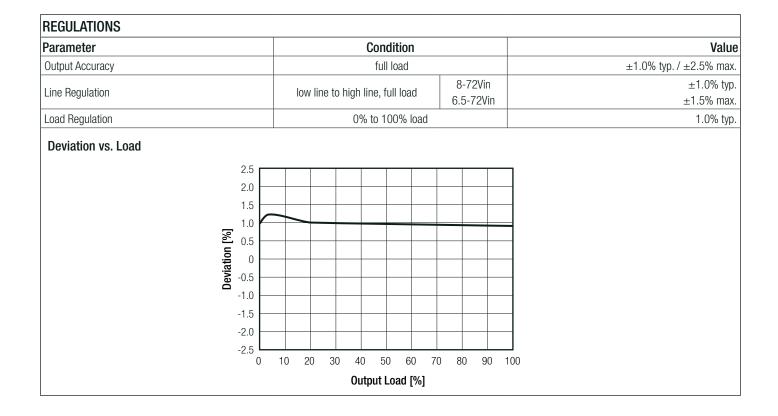
Note3: Measurements are made with a 10µF MLCC across output (low ESR)

continued on next page

RECOM DC/DC Converter

R-78HE-0.3


0.3 Amp


SIP3

RECOM DC/DC Converter

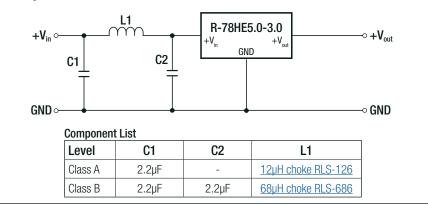
R-78HE-0.3 Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

PROTECTIONS		
Parameter	Condition	Value
Short Circuit Protection (SCP)	below 100m Ω	continuous, automatic recovery
Over Current Protection (OCP)		hiccup mode, 160% typ.

RECOM **DC/DC** Converter

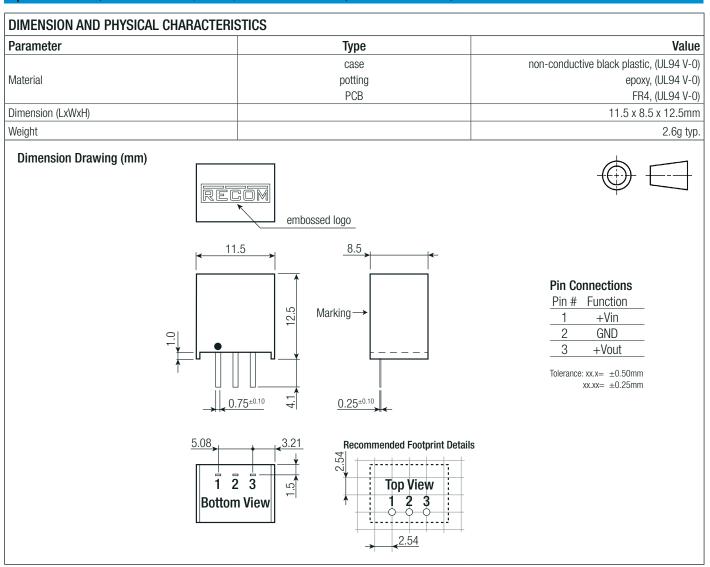
R-78HE-0.3 Series


Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

ENVIRONMENTAL												
Parameter		Condition							Value			
Operating Temperature Range	@	@ natural convection 0.1m/s						-40°C to +105°C				
		refer to derating graph							_	-40°C to +115°C		
Maximum Case Temperature										120°C		
Temperature Coefficient												0.02%/K
Thermal Impedance					0.1m	n/s, h	orizont	al				37K/W
Operating Altitude												2000m
Operating Humidity					non	-cono	densing	g				5% - 95% RH max.
Pollution Degree												PD2
Shock										according to MIL-STD 202G standard		
Vibration												according to MIL-STD 202G standard
MTBF		+25°C						15000 x 10 ³ hours				
		according to MIL-HDBK-217F, G.B. +95°C						1000 x 10 ³ hours				
Derating Graph												
(@ Chamber and natural convection 0.1m/s)		100									1	
		90										
		80										
	[%]	70										
	ad	00 00<										
	r T	50										
	utbi	40										
	0	30								i		
		20			 Vin ≤ 5	5V				i		
					55V < 1		50V			1		
		10			60V < \			1				
		0 L										

		Amt	bien	t Te	mp	erat	ture	[°C]	95 105 115
-40 -30 -20 -10	0	10	20	30	40	50	60	70	80	90 100 110 12

SAFETY AND CERTIFICATIONS		
Certificate Type (Safety)	Report / File Number	Standard
RoHS2		RoHS 2011/65/EU + AM2015/863
EMC Compliance	Condition	Standard / Criterion
Electromagnetic compatibility of multimedia equipment - Emission requirements	with external filter	EN55032, Class A and B


EMC Filter suggestion according to EN55032 Class A and B

RECOM DC/DC Converter

R-78HE-0.3 Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

PACKAGING INFORMATION								
Parameter	Туре	Value						
Packaging Dimension (LxWxH)	tube	530.0 x 10.7 x 23.2mm						
Packaging Quantity	tube	42pcs						
Storage Temperature Range		-55°C to +125°C						
Storage Humidity	non-condensing	95% RH max.						

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Non-Isolated DC/DC Converters category:

Click to view products by Recom Power manufacturer:

Other Similar products are found below :

 PSR152.5-7IR
 APTH003A0X-SRZ
 SPM1004-3V3C
 R-785.0-05
 10E24-P15-10PPM
 1E24-P4-25PPM-SHV-5KV
 CA-17205-L4

 PROPOWER-3.3V
 MYGTM01210BZN
 40C24-N250-I5-H
 40A24-P30-E
 3V12-P0.8
 10C24-N250-I10-AQ-DA
 4AA24-P20-M-H
 3V12

 N0.8
 3V24-P1
 3V24-N1
 BMR4672010/001
 BMR4652010/001
 6AA24-P30-I5-M
 6AA24-N30-I5-M
 BM2P101X-Z
 35A24-P30
 2.5M24-P1

 PTV03010WAD
 PTV05020WAH
 PTV12010LAH
 PTV12020WAD
 R-7212D
 R-7212P
 R-78AA15-0.5SMD
 R-78AA5.0-1.0SMD
 30A24

 N15-E
 10A12-P4-M
 10C24-N250-I5
 10C24-P125
 10C24-P250-I5
 6A24-P20-I10-F-M-25PPM
 1A24-P30-F-M-C
 TSR 1-24150SM

 1/2AA24-N30-I10
 1C24-N125
 12C24-N250
 V7806-1500
 PTV12020LAH
 PTV05010WAH
 PTN04050CAZT
 PTH12020WAD

 PTH12020LAS
 PTH05050YAH
 PTV05050YAH
 PTV05010WAH
 PTN04050CAZT
 PTH12020WAD