Features

Power Module

- 10W buck/boost converter with up to 4A output
- Input voltage can be higher, lower or same as output voltage
- >90% efficiency from 100mA 3000mA load
- 7µA standby power consumption
- Low profile, thermally enhanced 25pad LGA package

RBB10-2.0

2 Amp Single Output

EN55032 compliant

Description

The RBB10-2.0 series is a 4A non-isolated buck/boost regulator power module where the input voltage can be higher, lower or same as output voltage. Transition from buck to boost mode is smooth without any interruption to the output. The compact DOSA-compatible footprint module has a low profile of only 3.9mm, but with an efficiency of up to 95%, the RBB10-2.0 can operate at full load in ambient temperatures as high as 85°C without forced air cooling. The package has 6-sided shielding for optimal EMC performance and excellent thermal management. Typical applications include USB voltage regenerators, 3.3V<->5V converters and supercapacitor or Li-lon battery regulators.

Selection G	uide				
Part Number	Input Voltage Range [VDC]	Nom. Output Voltage [VDC]	Output Current max. [A]	Efficiency typ. [%]	Max. Capacitive Load ⁽¹⁾ [μF]
RBB10-2.0	2.3 - 5.5	5 (1.0 - 5.5)	2 - 4	96	42000

Notes:

Note1: Max. Cap Load is tested at nominal input and full resisitive load

Model Numbering

RBB10-2.0max. Output Current ——Packaging (2)

Notes:

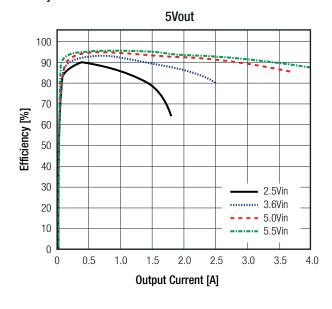
Note2: add suffix "-CT" for tube packaging for more details refer to "PACKAGING INFORMATION" without suffix, standard tape and reel packaging

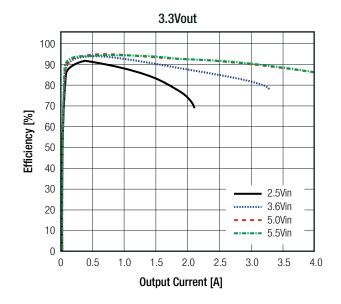
Specifications (measured @ Ta= 25°C, 5Vin, 5Vout, 2A and after warm-up unless otherwise stated)

Parameter	Co	ndition	Min.	Тур.	Max.
Internal Input Filter					capacitor
Input Voltage Range (3)			2.3VDC	5VDC	5.5VDC
Absolute Maximum Input Voltage					7VDC
Undervoltage Lockout Threshold			1.6VDC	1.75VDC	2.0VDC
Undervoltage Lockout Hysteresis				65mV	
Input Current	1	= 5VDC = 3.6VDC		2.3A 3.4A	
Quiescent Current		= 5.0VDC = 5VDC		40µA	90μΑ
Internal Power Dissipation	Vin= 5VDC Vin= 3.6VDC				0.9W 1.8W
Output Current Range	refer to safe operating area		0A	2A	4A
Output Voltage Trimming (4)	see table	or calculation	1.0VDC	5.0VDC	5.5VDC
Minimum Load			0%		
0	power up 2A	Vin= 5VDC Vin= 3.6VDC		1.4ms 1.8ms	
Start-up time	BUCK BOOST	Vin= 5VDC Vin= 3.6VDC		700µs 450µs	

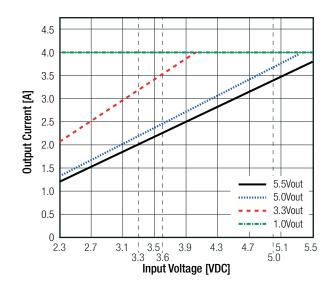
www.recom-power.com REV.: 6/2019 RBB-1

Series


Specifications (measured @ Ta= 25°C, 5Vin, 5Vout, 2A and after warm-up unless otherwise stated)


Parameter	Conc	Condition		Тур.	Max.
Rise Time				400µs	
ON/OFF CTRL	nom. Vin= 5VDC	DC-DC ON DC-DC OFF		Open Short or -0	or 1.2V <v<sub>CTRL<vin 0.3V<v<sub>CTRL<0.4VDC</v<sub></vin </v<sub>
Input Current of CTRL Pad	nom. Vin= 5VDC	CTRL voltage = 0V		5μΑ	CIRL
Standby Current	nom. Vin= 5VDC	CTRL voltage = 0V		5.1µA	7μΑ
Internal Operating Frequency				2.55MHz	
Output Ripple and Noise (5)	20MHz BW - 98Ω	@ 100MHz + 22µF		15mVp-p	
Absolute Maximum Conscitive Load	<1 second start up	$C_{ss} = 3700nF$			42000μF
Absolute Maximum Capacitive Load	<1 second start up	no C _{ss}			800µF

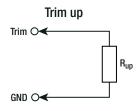
Notes:

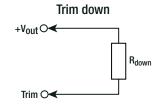

Note3: For detail information please refer to "Safe Operating Area" graph below
Note4: For detail information please refer to trim table or calculation on page RBB-3
Note5: Measurements are made with a 22µF MLCC across output (low ESR)

Efficiency vs. Load

Safe Operating Area

Series


Specifications (measured @ Ta= 25°C, 5Vin, 5Vout, 2A and after warm-up unless otherwise stated)


[VDC]

 $[\Omega]$

OUTPUT VOLTAGE TRIMMING

The RBB10-2.0 series offers the feature of trimming the output voltage over a range between 1.0V and 5.5V by using external trim resistors. The values for trim resistors shown in trim tables below are according to standard E96 values; therefore, the specified voltage may slightly vary.

 $Vout_{nom}$ = nominal output voltage [VDC]

 $Vout_{set}$ = trimmed output voltage [VDC]

 V_{ref} = reference voltage

 R_{up} = trim up resistor

 R_{down} = trim down resistor $[\Omega]$

 $R_1, R_2, R_3 = internal resistors$ [Ω]

Vout _{nom}	R ₁	R ₂	R ₃	V _{ref}
5VDC	629kΩ	1kΩ	788kΩ	0.805

Calculation:

$$\mathbf{R}_{\mathbf{up}} = \begin{bmatrix} \frac{\mathbf{R}_1}{\mathbf{Vout}_{\mathsf{set}} - \mathbf{V}_{\mathsf{nom}}} \end{bmatrix} - \mathbf{R}_2$$

$$\mathbf{R}_{down} = \begin{bmatrix} \frac{(Vout_{set} - V_{ref}) \times R_3}{Vout_{nom} - Vout_{set}} \end{bmatrix}$$

Practical Example RBB10-2.0:

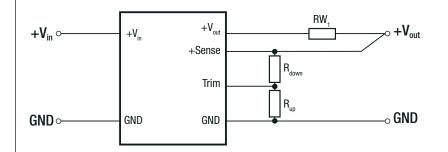
$$\mathbf{R}_{up} = \begin{bmatrix} \frac{629k}{5.5 - 5.0} \end{bmatrix} - 1k = \underline{\mathbf{1M26}\Omega}$$

$$R_{iin}$$
 according to E96 $\approx 1M27\Omega$

$$\mathbf{R}_{\text{down}} = \left[\frac{(4.0 - 0.805) \times 788 \text{k}}{5.0 - 4.0} \right] = \underline{\mathbf{2M52}}\underline{\Omega}$$

$$R_{down}$$
 according to E96 $\approx 2M55\Omega$

RBB10-2.0


Trim up

Vout _{set} =	5.1	5.2	5.3	5.4	5.5	[VDC]
R _{up} (E96) ≈	6M34	3M16	2M10	1M58	1M27	[Ω]

Trim down

Vout _{set} =	4.5	4.0	3.5	3.3	3.0	2.5	2.0	1.8	1.5	1.0	[VDC]
R_{down} (E96) \approx	5M90	2M55	1M43	1M15	866k	536k	316k	243k	158k	38k3	$[\Omega]$

REMOTE SENSE

The output voltage can be adjusted via the trim and sense functions.

The maximum output voltage from Trim and Sense function combined is 5.5VDC. Derating may be required when using Trim and/or sense functions.

RW, ... wire losses +

 R_{up} ... trim up resistor

R_{down} ... trim down resistor

Series

Specifications (measured @ Ta= 25°C, 5Vin, 5Vout, 2A and after warm-up unless otherwise stated)

REGULATIONS			
Parameter	Con	dition	Value
Output Accuracy			±3.0% max.
Line Regulation	low line to hig	nh line, full load	1.0% typ. / ±3.0% max.
Load Regulation	0% to 100% load	PWM mode selected (6)	0.5% max.
Transient Response	100% - 0	% load step	200mV max.
Hansient nesponse	recove	ery time	500μs typ.

Notes:

Note6: The RBB10 has the possibility to work in two regulation modes:

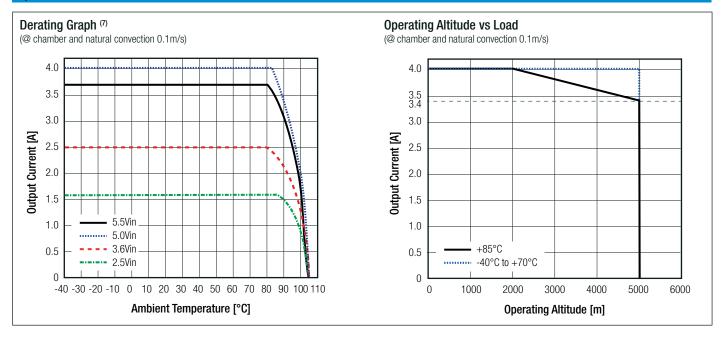
Powersave Mode (standard): This mode is the best for use at low loads to reduce power consumption and extend battery life. In this mode the internal power consumption is reduced by using burst mode for loads under 350mA and PWM for loads above 350mA. The drawback is a 1-3 % higher output voltage at low load than full load.

Fixed PWM mode: In PWM mode the device accurately regulates the output voltage independently of the load current. The drawback is a higher internal power consumption and shorter battery life at lower loads. Pull down the Mode pad to GND to enter this mode.

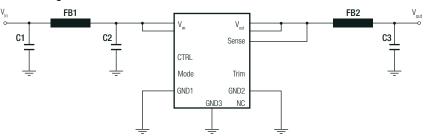
PROTECTIONS			
Parameter	Cond	lition	Value
Short Circuit Protection (SCP)	50r	m Ω	constant current limit
Short Circuit Input Current	nom. Vin= 2.3VDC		700mA typ.
Over Current Protection (OCP)	refer to safe operating area		220% - 240%, constant current mode
Over Temperature Protection (OTP)	case temperature (measured on tc point)	DC-DC OFF DC-DC ON	110°C, auto restart after cool down 100°C typ.

ENVIRONMENTAL			
Parameter	Condition		Value
Operating Temperature Range (7)	@ natural convection 0.1m/s (refer to derating graph)	up to 4A load	-40°C to +85°C
operating remperature manys	Thatarar convection or mine (refer to derating graph)	up to 2A load	-40°C to +100°C
Maximum Case Temperature			+110°C
Temperature Coefficient	@ +65°C Tamb		0.02%/K
Thermal Impedance	0.1m/s, horizontal (Tcase to Tamb)		8K/W
Operating Altitude	with derating @ natural convection 0.1m/s (refer to altif	ude vs. load graph)	5000m
Operating Humidity	non-condensing		5% - 95% RH max.
	MIL CTD 910C Mathed 516 6 Dropada	ıro İ	40g, 11ms, saw-tooth, 3 shocks ± per axis
Shock	MIL-STD-810G, Method 516.6, Procedu	1161	3 axis; unit is operating
SHOOK	MIL-STD-810G, Method 516.6, Procedu	re IV	drop on 50mm plywood on concrete
	WILE OTD OTOG, Wiction 510.0, Frocedu	26 times from 1 meter	
Temperature Cycling	MIL-STD-883F, Method 1010, Condition A		powered -50°C to +85°C, 300 cycles
			Category 24 - Figure 514.6E-1 - power spectral
Random Vibration	MIL-STD-810G, Method 514.6, Procedure I, C	ategory 24	density = $0.04g^2/Hz$ at $20Hz - 1000Hz$,
Trandom vibration	Wile OTD OTOG, Motified OT4.0, Floodedite 1, Of	atogory 24	-6dB/Octave at 1000Hz – 2000Hz,
			60 minutes x 3 axis; unit is operating during tests
 MTBF	according to MIL-HDBK-217F, G.B.	+25°C	2200 x 10 ³ hours
וטוווו	according to MIL TIDDIC 2171, C.D.	+85°C	400 x 10 ³ hours
	Notes:		

continued on next page


www.recom-power.com REV.: 6/2019 RBB-4

Note7: tested with a eurocard 160x100mm 70µm copper, 4 layer


Series

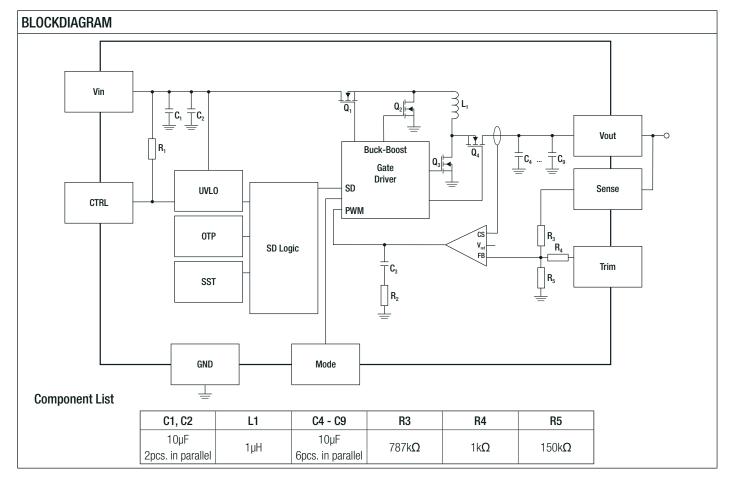
Specifications (measured @ Ta= 25°C, 5Vin, 5Vout, 2A and after warm-up unless otherwise stated)

SAFETY AND CERTIFICATIONS		
Certificate Type (Safety)	Report / File Number	Standard
RoHS 2+		RoHS 2011/65/EU + AM2015/863
		1
EMC Compliance	Condition	Standard / Criterion
Electromagnetic compatibility of multimedia equipment - Emission requirements	with external components	EN55032, Class B
Information technology equipment - Immunity characteristics - Limits and methods of measurement		EN55024:2010+A1:2015

EMC Filtering Suggestions according to EN55032

Component List Class B

C1	C2	FB1	FB2	C3
10µF 25V X7R	10µF 25V X7R	WE ref.:	WE ref.:	22uF 10V 7XR
Ιυμί 237 λ/ Ν	Ιυμί 23/ Α/Ν	742792510	7427932	ΖΖμΙ ΙΟΥ / ΛΠ


Parameter	Туре	Value
	case	metal
Material	PCB	FR4, (UL94 V-0)
	solder pads	copper with electrolytic nickel-gold
Dimension (LxWxH)		12.19 x 12.19 x 3.75mm
Weight		1.1g typ.

Series

Specifications (measured @ Ta= 25°C, 5Vin, 5Vout, 2A and after warm-up unless otherwise stated)

Dimension Drawing (mm) Pinning information Pad # Function Description 12.19 ±02 Positive input voltage with respect to GND. Connect to a A1, A2 Vin Vin plane for enhanced thermal performance High active: pull to GND to disable the device. C1 CTRL Pull high or leave open to enable the device Positive output voltage. Connect to a Vout plane for 12.19 ±0.5 A5, B5 Vout enhanced thermal performance Connect this pad to the load or directly to Vout. This pad 11.70 11.70 C5 Sense must not be left floating E5 Trim Used to set the output voltage between 0.9V and 6V E1 NC Not connected E2 Refer to note 6 on page RBB-4 Mode **Recommended Footprint Details Bottom View Top View** D1 NC Not connected 1.52 1.06 25 x □1.0 A3, A4, B1, B2, B3, B4, C2, C3, Negative input voltage. Connect to GND plane(s) for GND enhanced thermal performance C4, D2, D3, D4, D5, E3, E4 tc = case temperature measuring point Pad tolerance= ±0.05mm _ _ _ _ E Case tolerance= ±0.25mm 2 3 4 2 3 4

Series

Specifications (measured @ Ta= 25°C, 5Vin, 5Vout, 2A and after warm-up unless otherwise stated)

PACKAGING INFORMATION		
Parameter	Туре	Value
Packaging Dimension (LxWxH)	tape and reel	330.2 x 330.2 x 30.4mm
	tape and reel (carton)	365.0 x 365.0 x 55.0mm
	tube ("-CT")	530.0 x 30.3 x 19.2mm
Packaging Quantity	tape and reel	500pcs
	tube ("-CT")	30pcs
Tape Width		24mm
Storage Temperature Range		-55°C to +125°C
Storage Humidity	non-condensing	95% RH max.

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.

www.recom-power.com REV.: 6/2019 RBB-7

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Non-Isolated DC/DC Converters category:

Click to view products by Recom Power manufacturer:

Other Similar products are found below:

DP8160G-S1-R1 BRFS50 APTH003A0X-SRZ SPM1004-3V3C APXW012A0X3-SRDZ R-785.0-05 BRFS30 PJT020A0X43-SRZ 10E24-P15-10PPM 1E24-P4-25PPM-SHV-5KV 4D15-N1 MYGTM01210BZN APXW012A0X3-SRDZ I6A24008A033V-N00-R 10C24-N250-I10-AQ-DA 4AA24-P20-M-H DX150N 3V12-N0.8 2HVA24-BP1-F-25PPM-SHV-5KV 5HVA24-BP1-F-25PPM-SHV-5KV 1/2AA24-P30-I10-1C24-P20-M-C VI-920194B T31SN24005NMFA 3V24-P1 3V24-N1 BMR4672010/001 BMR4652010/001 BMR4668004/001

T31SN12008NMFA 6AA24-P30-I5-M 6AA24-N30-I5-M PTV03020WAH PTV05020WAH PTV12010LAH PTV12020WAD R-625.0D R-7212D R-7212P R-745.0D R-78AA15-0.5SMD R-78AA5.0-1.0SMD 30A24-N15-E 10A12-P4-M 10C24-N250-I5 10C24-P125 10C24-P250-I5 6A24-P20-I10-F-M-25PPM 1A24-P30-F-M-C TSR 1-24150SM