Features

- Wide Vin 4.3 to 65VDC
 - High power density (LxWxH = 12.19x12.19x3.75)
 - Wide operating temperature -40°C to +95°C at full load
- Efficiency up to 89%, no need for heatsinks
- 6-sided shielding

Module

Power

- Thermally and EMI enhanced 25 pad LGA package
- Low profile

Description

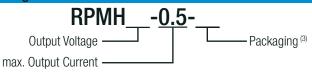
The RPMH-0.5 series is a wide input voltage, 0.5A non-isolated switching regulator power module. The module accepts with up to 65VDC input and provides a trimmable output from 2.6 up to 28VDC and comes complete with a full set of features including adjustable output, sequencing, soft-start control, on/ off control, and power good signals. The ultra-compact module has a profile of only 3.75mm, but with an efficiency of up to 89%, the device can operate at full load in ambient temperatures as high as +95°C and with power derating up to 105°C without forced air cooling. The package is complete with 6-sided shielding for optimal EMC performance and excellent heat management.

Selection Gu	ide					
Part Number	Input Voltage Range ⁽¹⁾ [VDC]	Output Voltage [VDC]	Vout Adjust Range [VDC]	Output Current max. [A]	Efficiency typ. [%]	Max Capacitive typ. Load ⁽²⁾ [µF]
RPMH3.3-0.5	4.3 - 65	3.3	2.64 - 3.63	0.5	72	80000
RPMH5.0-0.5	6 - 65	5	4 - 5.5	0.5	77	50000
RPMH12-0.5	13.5 - 65	12	7.2 - 13.2	0.5	82	20000
RPMH15-0.5	16.5 - 65	15	9 - 16.5	0.5	85	13200
RPMH24-0.5	25.5 - 65	24	15 - 28	0.5	89	9400

Notes:

Note1: Input voltage must be higher than desired output voltage. Check buck mode and 100% duty cycle mode Note2: Max. Cap Load is tested at nominal input and full resistive load

RPMH-0.5



EN55032 compliant

Model Numbering

Notes:

Note3: Add suffix "-CT" for tube packaging for more details refer to "PACKAGING INFORMATION" without suffix, standard tape and reel packaging

Specifications (@ Ta= 25°C, nom. Vin, full load, with output cap ⁽⁴⁾ after warm-up unless otherwise stated)

BASIC CHARACTERISTICS							
Parameter	Conditio	n	Min.	Тур.	Max.		
Internal Input Filter						capacitor	
		3.3Vout		4.3VDC			
		5.0Vout		6VDC			
	Buck mode	12Vout		13.5VDC		65VDC	
		15Vout		16.5VDC			
land Maltana Danas		24Vout		25.5VDC			
Input Voltage Range	100% duty cycle mode ⁽⁵⁾		3.3Vout			4.3VDC	
			5.0Vout			6VDC	
		Vout= Vin - Vdrop	12Vout	3VDC		13.5VDC	
			15Vout			16.5VDC	
			24Vout			25.5VDC	
Absolute Maximum Input Voltage						68VDC	
		DC-DC ON		2.6VDC		2.95VDC	
Undervoltage Lockout (UVLO)	DC-DC OFF		2.35VDC		2.6VDC		

Notes:

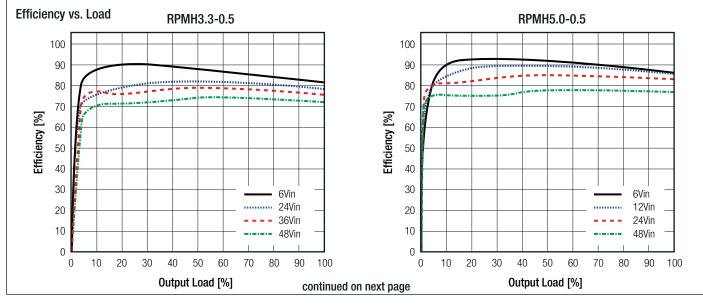
Note4: Output capacitor required. Please refer to "Output Capacitor".

continued on next page

RPMH-0.5 Series

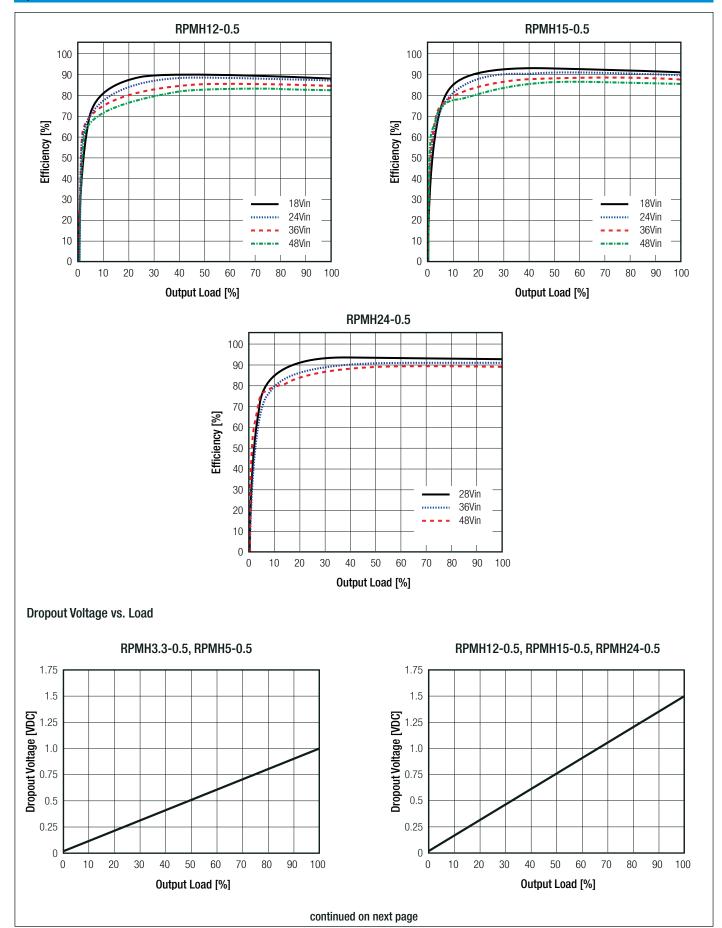
Specifications (@ Ta= 25°C, nom. Vin, full load, with output cap ⁽⁴⁾ after warm-up unless otherwise stated)

Parameter	Cond	lition	Min.	Тур.	Max.	
Input Current	nom. Vin= 48VDC	3.3Vout 5.0Vout 12Vout 15Vout		48mA 68mA 152mA 184mA		
		24Vout		281mA		
Quiescent Current	nom. Vin= 48VDC	3.3Vout, 5.0Vout 12Vout, 15Vout 24Vout		16μΑ 50μΑ 100μΑ	50μΑ 100μΑ 150μΑ	
Internal Power Dissipation	nom. Vin= 48VDC	3.3Vout 5.0Vout 12Vout, 15Vout 24Vout		0.64W 0.75W 1.32W 1.48W		
Output Voltage Trimming (6)			2.64VDC		28VDC	
Minimum Dropout Voltage (Vdrop) (7)	Vin min. = Vdrop + Vout	3.3Vout, 5Vout others		2V/A 3V/A		
Minimum Load			0%			
Start-up Time	without using soft start function/	power up by using CTRL function		1.5ms		
Rise-time				900µs		
ON/OFF CTRL	DC-D DC-D	C ON C OFF		•	1.22V <v<sub>CTRL<vin <v<sub>CTRL<1.144VDC</v<sub></vin </v<sub>	
Standby Current	DC-D	C OFF	15µA			
	3.31	/out		300kHz		
Internal Operating Frequency	5.0 ¹	/out /out, 24Vout		400kHz 600kHz		
		3.3Vout		20mVp-p		
		5.0Vout		2011Vp-p 35mVp-p		
Output Ripple and Noise ⁽⁸⁾	20MHz BW	12Vout		40mVp-p	100mVp-p	
		15Vout, 24Vout		30mVp-p		


Notes:

Note5: As input approaches output voltage set point, device enters 100% duty cycle mode. In 100% duty cycle mode, Vout equals Vin minus dropout voltage (refer to "Dropout Voltage vs. Load")

Note6: For more detailed information, please refer to "OUTPUT VOLTAGE TRIMMING"


Note7: Required dropout voltage per 1A output current to be within accuracy (refer to "Dropout Voltage vs. Load")

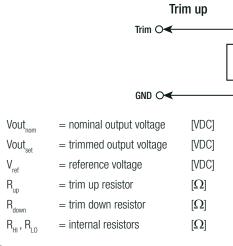
Note8: Measurements are made with a 22µF MLCC across output (low ESR)

RPMH-0.5 Series

Specifications (@ Ta= 25°C, nom. Vin, full load, with output cap (4) after warm-up unless otherwise stated)

Specifications (@ Ta= 25°C, nom. Vin, full load, with output cap ⁽⁴⁾ after warm-up unless otherwise stated)

Output Capacitor


The RPMH requires MLCC output capacitors for normal operation (see table).

Output Capacitance					
Vout _{nom}	C _{OUT}				
3.3VDC, 5.0VDC					
12VDC	10uF 25V X7R 1206				
15VDC	10uF 25V X7R 1206				
24VDC	2 x 10uF 50V X7R 1210				

OUTPUT VOLTAGE TRIMMING

The RPMH-series offers the feature of trimming the output voltage by using external trim resistors. The values for trim resistors shown in trim tables below are according to standard E96 values; therefore, the specified voltage may slightly vary. Refer to "Selection Guide"

Rup

Calculation:

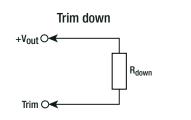
$$\mathbf{R}_{up} = \begin{bmatrix} \mathbf{R}_{HI} \\ \mathbf{Vout}_{set} - \mathbf{V}_{nom} \end{bmatrix}$$

Practical Example RPMH3.3-0.5, trim up

 $Vout_{set} = 3.63VDC$

$$\mathbf{R}_{up} = \begin{bmatrix} 205k \\ 3.63 - 3.3 \end{bmatrix} = \underline{\mathbf{621k}\Omega}$$

 \mathbf{R}_{up} according to E96 $\approx \mathbf{\underline{619k\Omega}}$


RPMH3.3-0.5

Trim up

Vout _{set} =	3.4	3.5	3.63	[VDC]
R_{up} (E96) \approx	2M05	1M02	619k	[Ω]

Trim down

					r
Vout _{set} =	3.1	3	2.8	2.64	[VDC]
R_{down} (E96) \approx	1M58	1M	536k	365k	[Ω]

Vout _{nom}	R _{HI}	R _{LO}	V _{ref}
3.3VDC	205k Ω	169kΩ	
5.0VDC	374kΩ	$309k\Omega$	
12VDC	1.22MΩ	1MΩ	1.223VDC
15VDC	1.22MΩ	1MΩ	
24VDC	1.22MΩ	1MΩ	

$$\mathbf{R}_{down} = \begin{bmatrix} (Vout_{set} - V_{ret}) \times R_{LO} \\ \hline Vout_{nom} - Vout_{set} \end{bmatrix}$$

Practical Example RPMH3.3-0.5, trim down

 $Vout_{set} = 2.64VDC$

$$\mathbf{R}_{\text{down}} = \left[\frac{(2.64 - 1.223) \times 169k}{3.3 - 2.64} \right] = \mathbf{\underline{363k\Omega}}$$

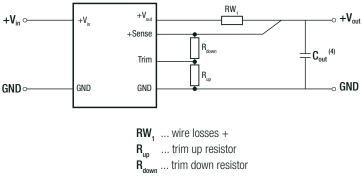
 \mathbf{R}_{down} according to E96 $\approx \mathbf{\underline{365k\Omega}}$

RPMH5.0-0.5

Trim up

Vout _{set} =	5.1	5.3	5.5	[VDC]
R_{up} (E96) \approx	3M74	1M24	750k	[Ω]

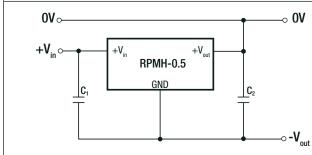
Trim down


Vout _{set} =	4.7	4.5	4.3	4	[VDC]
R_{down} (E96) \approx	3M57	2M	1M33	845k	[Ω]

continued on next page

Specifications (@ Ta= 25°C, nom. Vin, full load, with output cap ⁽⁴⁾ after warm-up unless otherwise stated)

RPMH12-0.	5									
Trim up										
Vout _{set} =	12.4	12.6	12.8	13	13.2	[VDC]				
$\rm R_{up}$ (E96) $pprox$	3M01	2M	1M5	1M2	1M	[Ω]				
Trim down										
Vout _{set} =	10	9.6	9	8.5	8	7.7	7.2	[VDC]		
R_{down} (E96) $pprox$	4M32	3M4	2M61	2M05	1M69	1M5	1M24	[Ω]		
RPMH15-0.	5									
Trim up										
Vout _{set} =	15.5	15.7	15.9	16.1	16.3	16.5	[VDC]			
R_{up} (E96) \approx	2M4	1M74	1M33	1M1	931k	820k	[Ω]			
Trim down										
Vout _{set} =	12	11.5	11	10.5	10	9.5	9	[VDC]		
R_{down} (E96) \approx	3M6	2M94	2M4	2M05	1M74	1M5	1M3	[Ω]		
RPMH24-0.	5									
Trim up										
Vout _{set} =	24.5	25	25.5	26	26.4	27	28	[VDC]		
R_{up} (E96) \approx	2M43	1M2	806k	604k	511k	402k	300k	[Ω]		
Trim down										
Vout _{set} =	19.5	19.2	18	17.5	17	16.5	16	15.5	15	[VDC]
R _{down} (E96) ≈	3M9	3M74	2M8	2M49	2M26	2M	1M82	1M69	1M5	[Ω]


REMOTE SENSE +V_{ou} +V_{in} ↔ +V_{in} +Sense Trim

The output voltage can be adjusted via the trim and sense functions. The maximum output voltage from trim and sense function combined is listed in the table below. Derating may be required when using trim and/or sense functions.

Vout _{nom}	Vout max.
3.3VDC	3.63VDC
5.0VDC	5.5VDC
12VDC	13.2VDC
15VDC	16.5VDC
24VDC	28VDC

POSITIVE TO NEGATIVE

 ${\bf C_1}$ and ${\bf C_2}$ may be added to reduced ripple and should be fitted close to the converter pins.

Notes:

Note9: RECOM Power Modules can also be used to convert a positive voltag into a negative voltage. Parameters such as maximum Vin, efficiency and maximum operating temperature are reduced. Please contact RECOM for further details.

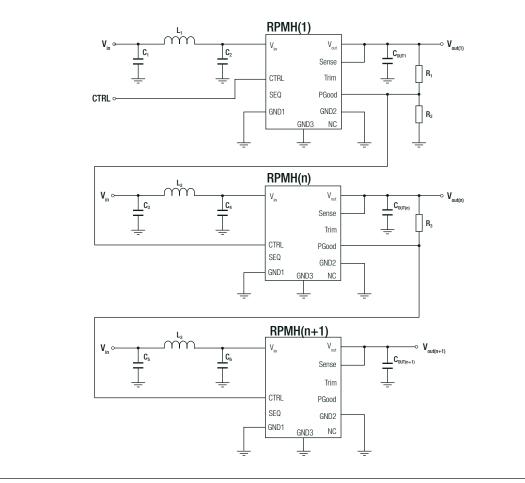
RPMH-0.5 Series

Specifications (@ Ta= 25°C, nom. Vin, full load, with output cap ⁽⁴⁾ after warm-up unless otherwise stated)

Parameter		Condition	Value
Output Accuracy			±2.0% typ. / ±4.8% max
		RPMH3.3-0.5 (4.3-65VDC)	±2.5% typ
Line Regulation		RPMH5.0-0.5 (6-65VDC)	±3.0% typ
	low line to high line	RPMH12-0.5 (13.5-65VDC) RPMH15-0.5 (16.5-65VDC)	±3.5% typ
		RPMH24-0.5 (25.5-65VDC)	±3.0% typ
Load Regulation (10)	20% to 100	0% load step recovery time	0.5% typ
Transiant Deepena	259	% load step change	100mVp-p
Transient Response		recovery time	2ms

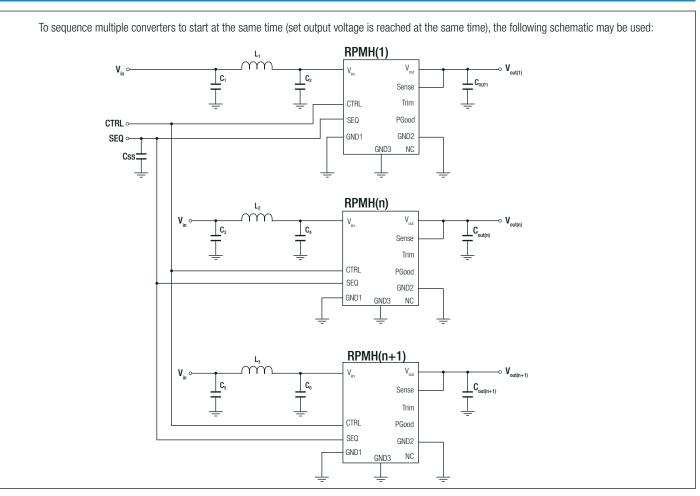
Note10:Operation below 20% load will not harm the converter, but specifications may not be met

Sequencing Multiple Modules


The SEQ pin can be used to program the rising edge of the output voltage. An internal current source charges a soft-start capacitor which is connected from the sequencing pin to GND. The following equation is used to calculate the soft-start capacitor:

$$C_{ss}$$
 = soft-start capacitor

t = required soft-start time

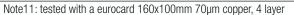

 C_{ss} [nF]= (8.1 x n) x t_{ss}[ms]

To sequence multiple power module start-up times, the power good (PGood) pin and the CTRL pin may be used. In below schematic, the RPMH(n) starts after RPMH(1) reaches its set output voltage and the power good signal is set to high which then enables RPMH(n). After RPMH(n) reaches its set output voltage, it enables RPMH(n+1).

RPMH-0.5 Series

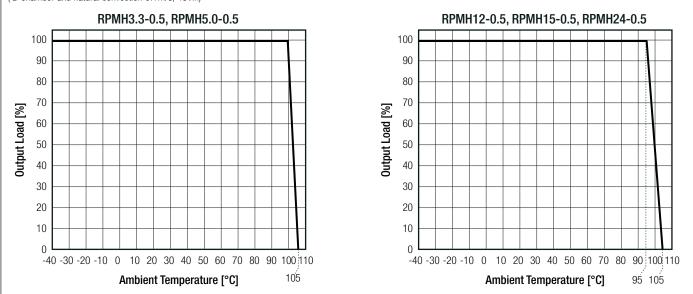
Specifications (@ Ta= 25°C, nom. Vin, full load, with output cap ⁽⁴⁾ after warm-up unless otherwise stated)

PROTECTIONS		
Parameter	Condition	Value
Short Circuit Protection (SCP)	less than 50m Ω	hiccup mode, automatic recovery
Over Current Protection (OCP)		120% min.


ENVIRONMENTAL				
Parameter	Condition		Value	
Operating Temperature Range (11)	@ natural convection 0.1m/s (refer to "Derating Graph")		-40°C to +105°C	
Maximum Case Temperature	measured on tc point (refer to "Dimension L	Drawing")	+105°C	
Temperature Coefficient			0.02%/K typ.	
Thermal Impedance (11)	natural convection 0.1m/s, horizontal (T _{case} to T _{AMB})		8K/W typ.	
Operating Altitude	@ natural convection 0.1m/s		500	
Operating Humidity	non-condensing		5% - 95% RH	
Chaol	MIL-STD-810G, Method 516.6, Procedure I MIL-STD-810G, Method 516.6, Procedure IV		40g, 11ms, saw-tooth, 3 shocks \pm per axis 3 axis; unit is operating	
Shock			drop on 50mm plywood on concrete 26 times from 1 met	
Random Vibration	MIL-STD-810G, Method 514.6, Procedure I, Category 24		Category 24 - Figure 514.6E-1 - power spectral density = 0.04 Hz at 20Hz -1000 -6dB/octave at 1000Hz - 2000 60 minutes x 3 axis; unit is operating during te	
MTBF	according to MIL-HDBK-217F, G.B. @ full load	+25°C @ max. T _{AMB}	2.696 x 10 ³ hours 995 x 10 ³ hours	

continued on next page

RPMH-0.5 Series


Specifications (@ Ta= 25°C, nom. Vin, full load, with output cap ⁽⁴⁾ after warm-up unless otherwise stated)

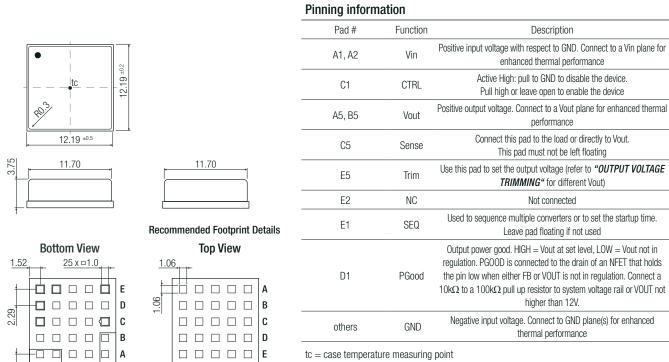
Notes:

Derating Graph (11)

(@ chamber and natural convection 0.1m/s, 48Vin)

SAFETY AND CERTIFICATIONS					
Certificate Type (Safety)		Report / Fi	le Number	Standar	
Audio/video, information and communication technology equipment. Safety requirements		designed to meet		EN62368-	
RoHS 2					RoHS 2011/65/EU + AM2015/86
EMC Compliance			Cond	ition	Standard / Criterio
Electromagnetic compatibility of multimedia equipment - emission requirements		with external components (refer to " <i>EMC filtering sugges-</i> <i>tion</i> " below)		EN55032, Class	
EMC filtering suggestion according to EN5	5032				
+V _{in} °	 	C ₂ CTRL CTRL GND1 GND3	V _{out} Sense Trim PG GND2 NC	C _{OUT1} +V _{out}	
Component List		1		1	_
U1	L1	C1	C2	C _{OUT1}	
RPMH3.3-0.5 RPMH5.0-0.5				22µF 10V X7R	
RPMH12-0.5 RPMH15-0.5	<u>RLS-126</u>	2.2µF 100V X7R	2 x 4.7µF 100V X7R or X7S	22µF 25V X7R	
RPMH24-0.5				2 x 10µF 50V X7F	3

RPMH-0.5 Series


Specifications (@ Ta= 25°C, nom. Vin, full load, with output cap ⁽⁴⁾ after warm-up unless otherwise stated)

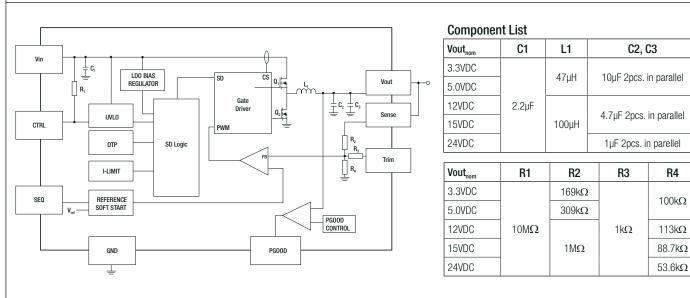
2 3 4 5

1

DIMENSION AND PHYSICAL CHARACTERISTICS		
Parameter	Туре	Value
	case	metal
Material	PCB	FR4, (UL94 V-0)
	solder pads	copper with electrolytic nickel-gold
Dimension (LxWxH)		12.19 x 12.19 x 3.75mm
Weight		1.1g typ.

Dimension Drawing (mm)

Pad tolerance= ±0.05mm


Case tolerance= ±0.25mm

BLOCKDIAGRAM

1

.52

2 3 4 5

RPMH-0.5 Series

Specifications (@ Ta= 25°C, nom. Vin, full load, with output cap (4) after warm-up unless otherwise stated)

PACKAGING INFORMATION

Parameter	Туре	Value
Packaging Dimension (LxWxH)	tape and reel	330.2 x 330.2 x 30.4mm
	tape and reel (carton)	265.0 x 240.0 x 60.0mm
	tube ("-CT")	530.0 x 30.3 x 19.2mm
Packaging Quantity	tape and reel	200pcs
	tube ("-CT")	30pcs
Tape Width		24mm
Storage Temperature Range		-55°C to +125°C
Storage Humidity	non-condensing	95% RH max.

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Non-Isolated DC/DC Converters category:

Click to view products by Recom Power manufacturer:

Other Similar products are found below :

 PSR152.5-7IR
 APTH003A0X-SRZ
 SPM1004-3V3C
 R-785.0-05
 10E24-P15-10PPM
 1E24-P4-25PPM-SHV-5KV
 PROPOWER-3.3V

 MYGTM01210BZN
 40C24-N250-I5-H
 40A24-P30-E
 3V12-P0.8
 10C24-N250-I10-AQ-DA
 4AA24-P20-M-H
 3V12-N0.8
 3V24-P1
 3V24

 N1
 BMR4672010/001
 BMR4652010/001
 6AA24-P30-I5-M
 6AA24-N30-I5-M
 BM2P101X-Z
 35A24-P30
 2.5M24-P1
 PTV03010WAD

 PTV05020WAH
 PTV12010LAH
 PTV12020WAD
 R-7212D
 R-7212P
 R-78AA15-0.5SMD
 R-78AA5.0-1.0SMD
 30A24-N15-E
 10A12-P4

 M
 10C24-N250-I5
 10C24-P125
 10C24-P250-I5
 6A24-P20-I10-F-M-25PPM
 1A24-P30-F-M-C
 TSR 1-24150SM
 1/2AA24-N30-I10
 1C24

 N125
 12C24-N250
 V7806-1500
 PTV12020LAH
 PTV05010WAH
 PTN04050CAZT
 PTH12020WAD
 PTH12020LAS
 PTH05050YAH

 PTH05T210WAH
 PT
 PT