Features

- Buck regulator power module with integrated shielded inductor
- 28V maximum input voltage
- 2.5A maximum output current
- SCP, OCP, OTP, OVP and UVLO protection
 - 4.5mm x 4mm low profile QFN package

Power Module

- Flip-Chip technology for improved thermal management
- Efficiency up to 91%

•

Description

The RPX-2.5 is a buck converter with integrated inductor in a tiny 4.5mm x 4mm x 2mm thermallyenhanced QFN package (the smallest in its class). The input range is from 4.5 to 28VDC, allowing 5V, 12V or 24V supply voltages to be used. The output voltage can be set with two resistors in the range from 1.2V up to 6V. The output current is up to 2.5A and is fully protected against continuous short-circuits, output overcurrent or over-temperature faults. The enable pin features an internal pull-up current source, so will operate with open-drain, open-collector, logic gate or switched inputs (leave open if not used).

Selection Guide						
Part Number	Input Voltage Range [VDC] ⁽¹⁾	Vout Adjust Range [VDC] ⁽¹⁾	Output Current max. [A]	Efficiency max. ⁽²⁾ [%]	Max. Capacitive Load ⁽³⁾ [µF]	
RPX-2.5	4.5-28	1.2-6	2.5	91	500	

Notes:

Note1: Refer to "Safe Operating Area"

Note2: Efficiency is tested at Vin= 12V, lout= 1A, Vout= 5V

Note3: Max. Cap Load is tested at nominal input and full resistive load

Model Numbering

RPX-2.5-CT

Notes:

Note4: add suffix "-CT" for bag packaging for more details refer to "PACKAGING INFORMATION" without suffix, standard tape and reel packaging

Packaging ⁽⁴⁾

Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load unless otherwise stated, refer to test set up)

ABSOLUTE MAXIMUM RATINGS					
Parameter	Condition	Min.	Тур.	Max.	
	Vin	-0.3VDC		30VDC	
	CTRL, FB	-0.3VDC		7VDC	
Absolute Maximum Voltage (5)	SW	-0.3VDC		30VDC	
	SW transient	-5VDC		30VDC	
	Vout	-0.3VDC		7VDC	
Shock	according to MIL-STD-883D, method 2002.3; 1ms, 1/2 sine, mounted			1500G	
Vibration	according to MIL-STD-883D, method 2007.7; 20Hz-2kHz			20G	
Operating IC Junction Temperature (T_J)		-40°C		+125°C	
Operating Ambient Temperature (T_{AMB})		-40°C		+85°C	
Storage Temperature (T _{STO})		-55°C		+150°C	

Notes:

Note5: Stresses beyond those listed under absolute maximum ratings can cause permanent damage to the device. (Values are at non-operating)

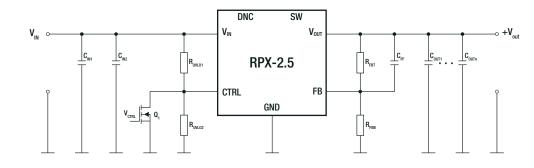
RPX-2.5

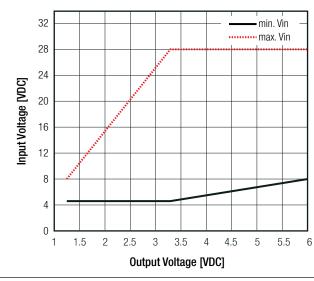
RPX-2.5 Series

Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load unless otherwise stated, refer to test set up)

OPERATING RATINGS

Parameter	Condition	Min.	Тур.	Max.
Input Voltage Range		4.5VDC (6)		28VDC
Under Voltage Lockout (UVLO)	DC-DC ON	3.8VDC	4.1VDC	4.4VDC
(default setting) (7)	DC-DC OFF	3.3VDC	3.6VDC	3.9VDC
Output Voltage Adjust Range	refer to "OUTPUT VOLTAGE SETTING"	1.2VDC		6VDC
CTRL Voltage Range		OVDC		6VDC
CTRL ON/OFF Thresholds	DC-DC ON (or open)		1.21VDC	1.28VDC
JIRL UN/OFF THRESHOLDS	DC-DC OFF (or short to GND)	1.1VDC	1.19VDC	
	$V_{CTRL} = 1.5VDC (DC-DC ON)$		1.6µA	
Input Current of CTRL Pin	V _{CTRL} = 1VDC (DC-DC OFF)		0.7µA	
Standby Current	DC-DC OFF		2μΑ	
Output Current		0A		2.5A ⁽⁸⁾
Ctart un Tinan	power on		10ms	
Start-up Time	by using CTRL (without C_{OUT})		6ms	
Rise-time	(internal soft start)		5ms	
Switching Frequency		550kHz	750kHz	1MHz
Output Ripple and Noise ⁽⁹⁾	20Mhz BW		22mVp-p	

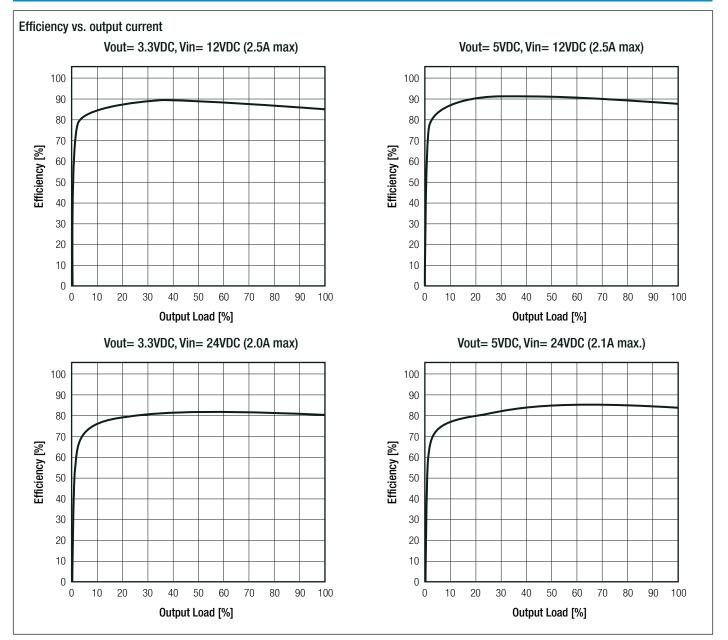

Notes:


Note6: The minimum recommended input voltage is 4.5 V or (V_{OUT} × 1.3), whichever is greater

Note7: Refer to "UNDER VOLTAGE LOCKOUT SETTING"

Note8: The maximum output current that the RPX can deliver is a function of input voltage, output voltage, and ambient temperature Note9: Measurement with C_{IN1} = 10µF, 50V 1210 ceramic, C_{IN2} = 100µF, 35V electrolytic and $C_{0UT1,2}$ = 47µF 16V, ceramic capacitors

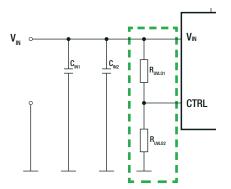
Test Set-up



Typical operating conditions				
Nominal Vin Vout lout , max				
24VDC	5VDC	2.0A		
24VDC	3.3VDC	2.1A		
12VDC	5VDC	2.5A		
12VDC	3.3VDC	2.5A		
5VDC	3.3VDC	2.5A		
5VDC	1.2VDC	2.5A		

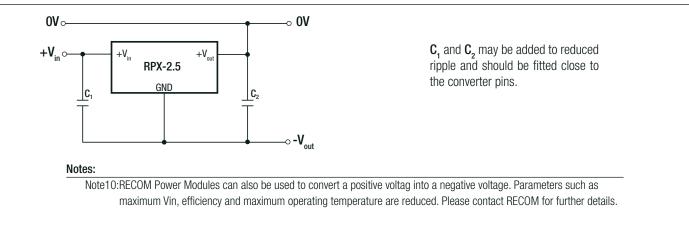
Safe Operating Area

RPX-2.5 Series


Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)

UNDER VOLTAGE LOCKOUT SETTING

The RPX-2.5 features an internal UVLO circuit that disables the converter until the input voltage exceeds 4.1V typ. This threshold can be raised by adding an external resistor divider R_{UVL01} and R_{UVL02}.

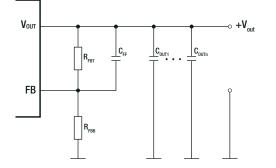

Standard Resistor Values					
VIN UVLO [VDC]	4.5	10	15	18	20
R_{UVLO1} [k Ω]	68.1	68.1	68.1	68.1	68.1
$R_{\scriptscriptstyle UVL02}\left[k\Omega ight]$	25.5	9.53	6.04	4.99	4.42

RPX-2.5 Series

Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)

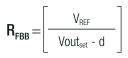
POSITIVE TO NEGATIVE

OUTPUT VOLTAGE SETTING


The recommended value of R_{FBT} is 10kΩ. The values for trim resistors shown in trim tables below are according to standard E96 values; therefore, the specified voltage may slightly vary. For other output voltages, the value of the required R_{ERR} resistor can be calculated using below equation:

 V_{REF}

d


 R_{FBT}

 R_{FBB}

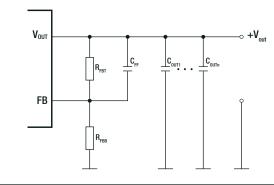
= nominal output voltage Voutnom [VDC] = trimmed output voltage Vout_{set} [VDC] = reference voltage (6VDC) [VDC] = trim offset (0.6VDC) [VDC] = Trim resistor ($10k\Omega$) [kΩ] = calculated trim resistor [kΩ]

Practical Example:

Resistor Table:

Vout _{set} =	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	[VDC]
R _{FBB} (E96) ≈	10k	8k45	7k5	6k65	6k04	5k36	4k99	4k64	4k22	4k02	[Ω]
		1	I		I						
$Vout_{set} =$	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3	3.1	[VDC]
$\rm R_{FBB}(E96) \approx$	3k74	3k48	3k32	3k16	3k01	2k87	2k74	2k61	2k49	2k37	$[\Omega]$
										1	
$Vout_{set} =$	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1	[VDC]
R_{FBB} (E96) $pprox$	2k32	2k21	2k15	2k05	2k	1k96	1k87	1k82	1k74	1k69	[Ω]
N/ 1	1.0								-		D (D 0)
Vout _{set} =	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	[VDC]
$\rm R_{FBB}(E96) \approx$	1k65	1k62	1k58	1k54	1k5	1k47	1k43	1k4	1k37	1k33	[Ω]
Vout _{set} =	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6	[VDC]	
R_{FBB} (E96) $pprox$	1k3	1k27	1k24	1k22	1k2	1k18	1k15	1k13	1k1	[Ω]	

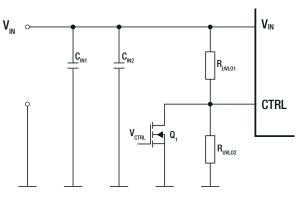
Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)


INPUT AND OUTPUT CAPACITOR

Input Capacitor

The RPX-2.5 requires a 10µF MLCC input capacitor for normal operation. For high transient load applications, an additional 47µF electrolytic capacitor connected in parallel is recommended, rated for a ripple current of 1.25A or higher.

Output Capacitor


The RPX-2.5 requires MLCC output capacitors for normal operation (see table). Transient load reaction time can be improved by adding a speedup capacitor, C_{FF} across R_{FBT} , but it is not required for normal operation or for output voltages below 2.5V.

	Minimum output capacitance			
Set Output Voltage [VDC]		Ceramic Capacitor (C _{outr})	Feed Forward Capacitor (C _{FF})	
MIN	MAX	[μ F]	[pF]	
1.2	<1.5	188 (4 x 47µF)	330	
1.5	<2.5	141 (3 x 47μF)	220	
2.5	<3.3	94 (2 x 47µF)	100	
3.3	<5	94 (2 x 47μF)	100	
5	<6	47	100	

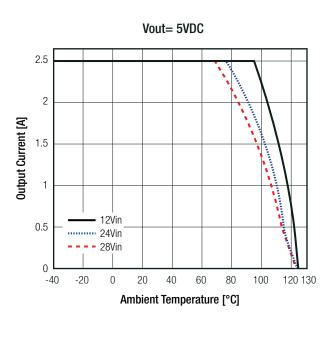
CTRL ON/OFF

The external CTRL input can also be used to disable the converter by pulling the CTRL pin to ground. An internal pull-up current source allows an external switch, open-collector transistor, open-drain transistor or a 3.3V/5V logic gate to be used to drive the CTRL pin. The UVLO adjust and external CTRL functions can be combined.

REGULATIONS					
Parameter	Condition	Min.	Тур.	Max.	
Feedback Voltage	no load	0.581VDC	0.596VDC	0.611VDC	
Temperature Coefficient	I _{OUT} = 0.2A		0.003%/K		
Line Regulation	low line to high line		±0.2%		
Land Degulation	5 - 100% load		0.2%		
Load Regulation	0 - 5% load		0.5%		
	10 <-> 100% load step change			200mV	
Transient Deepense	recovery time		6ms		
Transient Response	25% <-> 75% load step change			100mV	
	recovery time		125µs		

RPX-2.5 Series

Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)


PROTECTIONS				
Parameter	Condition	Value		
Short Circuit Protection (SCP)		Hiccup Mode, auto recovery		
Over Current Protection (OCP)		4.8A typ., hiccup mode		
Over Temperature Protection (OTP)	internal junction	165°C typ., thermal shut down 10°C typ. restart hysteresis		

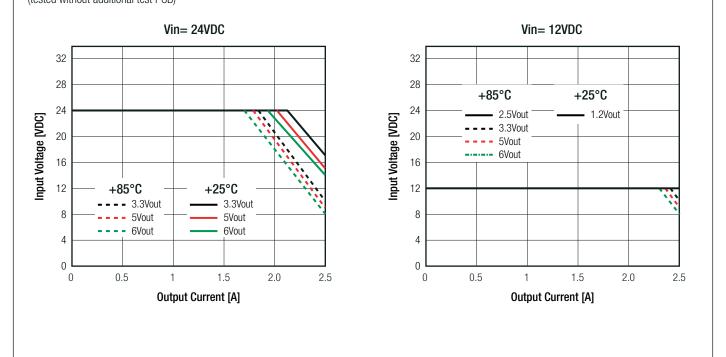
ENVIRONMENTAL				
Parameter	Condition	Condition		
ESD	human-body model (HBM), ANSI/ESDA/JE	DEC JS-001	±2.5kV	
	charged-device model (CDM), JEDEC JES	charged-device model (CDM), JEDEC JESD22-C101		
Moisture Sensitive Level	MSL peak temp. (11)	MSL peak temp. (11)		
	junction to T _{AMB}	junction to T _{AMB}		
Thermal Impedance (12)	junction to case (refer to tc poin	junction to case (refer to tc point)		
	junction to board (refer to tb poi	nt)	17K/W	
MTBF	according to TR-332, 50% stress G.B.	+25°C	400 x 10 ⁶ hours	
		+85°C	6 x 10 ⁶ hours	

Notes:

Note11:The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature

Thermal Derating (11)

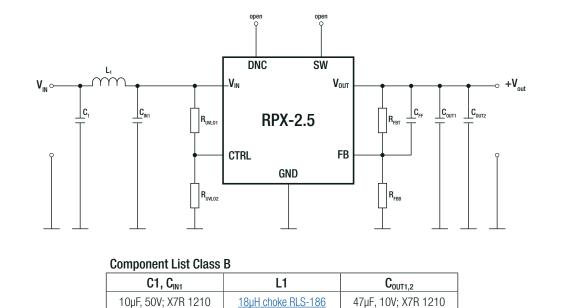
Notes:


Note12:Tested with 54.0 x 85.6mm 2 layer PCB with 105µm copper

continued on next page

RPX-2.5 Series

Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)

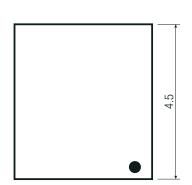

Input voltage vs. output current (tested without additional test PCB)

SAFETY AND CERTIFICATIONS		
Certificate Type (Safety)		Standard
RoHS2+		RoHS 2011/65/EU + AM2015/863
EMC Compliance	Condition	Standard / Criterion
EMC Compliance	Conuntion	Stanuaru / Griterion
Electromagnetic compatibility of multimedia equipment - Emission requirements	refer ro "EMC Filtering"	EN55032, Class B

EMC Filtering suggestions for EN55032

(Vin= 12VDC; Vout= 5VDC; Iout= 2.5A)

RPX-2.5 Series


Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)

DIMENSION AND PHYSICAL CHARACTERISTICSParameterTypeValueMaterialcaseplastic, UL94 V-0Dimension (LxWxH)case4.1 x 4.6 x 2.1mmWeight107mg typ.

Pad Information

Dimension Drawing (mm)


4.0

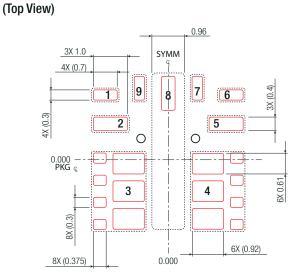
2X 0.85

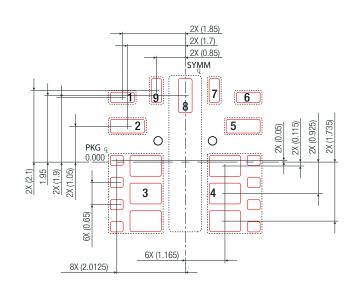
Tuu						
Pad #	Function	Description				
1	FB	Feedback Input. Used to set the output voltage between 1.2V and $\ensuremath{6V}$				
2	VIN	Input Voltage. Connect external bypass capacitors between this pin and GND close to the pins				
3	VOUT	Output Voltage. Connect external bypass capacitors between this pin and GND close to the pins				
4, 5	SW	Switch node. Do not connect				
6, 7	DNC	Do not connect. Must be soldered to an isolated pad				
8	GND	Ground pin. Connect this pin to the power ground plane on the PCB				
9	CTRL	CTRL pin. Float this pin when not used				
Toleran	/	= ±0.1mm				

 $x.xx / x.xxx = \pm 0.05 mm$

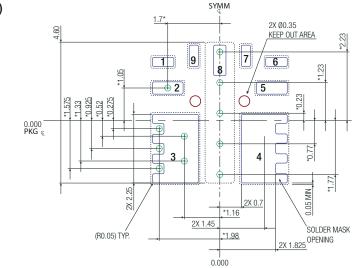
Dimensioning and tolerancing according to ASME Y14.5

2.0


continued on next page



RPX-2.5 Series


Specifications (measured @ ta= 25°C, 12Vin, 3.3Vout, full load and after warm-up unless otherwise stated, refer to test set up)

Recommended Stencil

Recommended Footprint Details (Top View)

Thermal pads are required to meet full specifications. *Vias must be filled or plugged for optimum thermal performance.

For more information about the soldering profile, visit our website and download our <u>App Notes</u>.

PACKAGING INFORMATION		
Parameter	Туре	Value
Packaging Dimension (LxWxH)	reel (diameter + width)	Ø330.0 + 12.4mm height
	tape and reel (carton)	336.0 x 336.0 x 48.0mm
	moisture barrier bag ("-CT")	100.0 x 100.0 x 30mm
Packaging Quantity	tape and reel	250pcs
	moisture barrier bag ("-CT")	10pcs
Tape Width		12mm
Storage Temperature Range		-55°C to +125°C
Storage Humidity	non-condensing	95% RH max.
ESD Sensitivity Level	HBM	Class 2
Moisture Sensitivity Level	JEDEC J-STD-020E	MSL3

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Non-Isolated DC/DC Converters category:

Click to view products by Recom Power manufacturer:

Other Similar products are found below :

 PSR152.5-7IR
 APTH003A0X-SRZ
 SPM1004-3V3C
 R-785.0-05
 10E24-P15-10PPM
 1E24-P4-25PPM-SHV-5KV
 PROPOWER-3.3V

 MYGTM01210BZN
 40C24-N250-I5-H
 40A24-P30-E
 3V12-P0.8
 10C24-N250-I10-AQ-DA
 4AA24-P20-M-H
 3V12-N0.8
 3V24-P1
 3V24

 N1
 BMR4672010/001
 BMR4652010/001
 6AA24-P30-I5-M
 6AA24-N30-I5-M
 BM2P101X-Z
 35A24-P30
 2.5M24-P1
 PTV03010WAD

 PTV05020WAH
 PTV12010LAH
 PTV12020WAD
 R-7212D
 R-7212P
 R-78AA15-0.5SMD
 R-78AA5.0-1.0SMD
 30A24-N15-E
 10A12-P4

 M
 10C24-N250-I5
 10C24-P125
 10C24-P250-I5
 6A24-P20-I10-F-M-25PPM
 1A24-P30-F-M-C
 TSR 1-24150SM
 1/2AA24-N30-I10
 1C24

 N125
 12C24-N250
 V7806-1500
 PTV12020LAH
 PTV05010WAH
 PTN04050CAZT
 PTH12020WAD
 PTH12020LAS
 PTH05050YAH

 PTH05T210WAH
 PT
 PT