Features

Regulated Converters

- 12W in SIP8 package
- 3kVDC isolation
- 4:1 input voltage range
- Operating temperature from -40°C to +75°C with no derating and convection cooling only
- Continuous short circuit protection
- ON/OFF CTRL pin

Description

The RS12 is an advanced DC/DC converter that uses planar transformer technology to offer a very high power density, 4:1 input voltage, regulated DC output with 3kVDC isolation and a wide operating temperature range of -40°C to +75°C (without derating and with convection cooling only). The SIP8 pinout is backwards compatible with our RS6 (6W) and RS3 (3W) offering the option of 3W, 6W or 12W of output power in the same sized package, the difference being that the RS12 uses a metal case. Additional features such as UVLO, CTRL pin, trimmable outputs and simple EMC filtering round off this versatile DC/DC converter which is also UL/IEC/EN 62368-1 safety certified with CB report.

Selection Gui	ide				
Part Number	nom. Input Voltage Range [VDC]	Output Voltage [VDC]	Output Current [mA]	Efficiency typ. ⁽¹⁾ [%]	max. Capacitive Load ⁽²⁾ [μF]
RS12-243.3SZ	9-36	3.3	2400	85	6000
RS12-2405SZ	9-36	5	2400	88	6000
RS12-2412SZ	9-36	12	1000	88	1000
RS12-2415SZ	9-36	15	800	88	860
RS12-2424SZ	9-36	24	500	89	200
RS12-483.3SZ	18-75	3.3	2400	85	5600
RS12-4805SZ	18-75	5	2400	88	5600
RS12-4812SZ	18-75	12	1000	88	1000
RS12-4815SZ	18-75	15	800	88	860
RS12-4824SZ	18-75	24	500	89	200

Notes:

Note1: Efficiency is tested by nominal input and full load at $+25^{\circ}$ C ambient Note2: Max Cap Load is tested by minimum input and constant resistive load

RS12-Z

12 Watt SIP8 Single Output

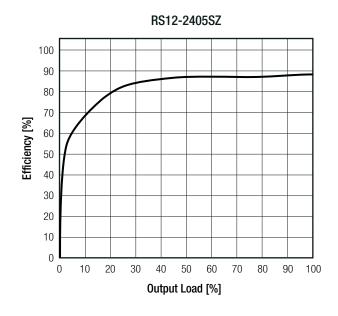
IEC/EN62368-1 certified UL62368-1 certified CSA/CAN No. 62368-1 certified CB Report EN55032 compliant

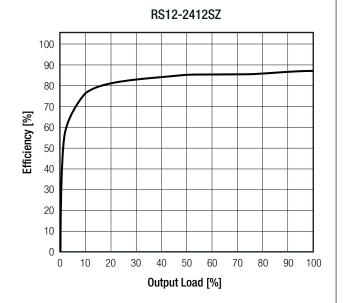
Model Numbering

Ordering Examples:

RS12-2405SZ nom. 24Vin (9-36VDC) 5Vout Single RS12-4812SZ nom. 48Vin (18-75VDC) 12Vout Single

Series

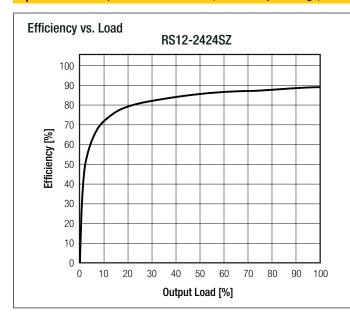

Specifications (measured @ Ta= 25°C, nominal input voltage, full load and after warm up unless otherwise specified)

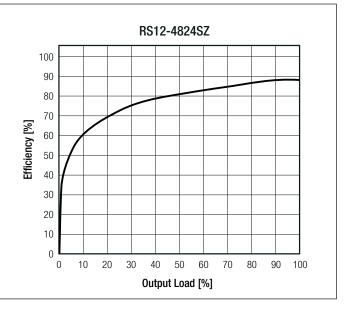

BASIC CHARACTERISTICS						
Parameter	Cor	ndition	Min.	Тур.	Max.	
Input Voltage Range	nom. Vin=	24VDC 48VDC	9VDC 18VDC	24VDC 48VDC	36VDC 75VDC	
Input Surge Voltage	100ms max.	nom. Vin= 24VDC 48VDC			50VDC 100VDC	
Input Current	nom. Vin=	24VDC 48VDC		580mA 290mA		
Quiescent Current	nom. Vin=		7mA 5mA			
Under Voltage Lockout	nom. Vin=	24VDC 48VDC		7.5VDC 16VDC		
ON/OFF CTRL		DC ON DC OFF		Open or $3.5VDC \le V_{CRTL} \le 15VDC$ Short or $0VDC \le V_{CRTL} \le 1.2VDC$		
Input Current of CTRL Pin	DC-	DC OFF			1mA	
Internal Operating Frequency			470kHz	500kHz		
Output Voltage Trimming	refer to "OUTPUT	VOLTAGE TRIMMING"	-10%		+10%	
Minimum Load				0%		
Start-up time	po\ ON/O		15ms 7ms			
Rise time				5ms		
Output Ripple and Noise (3)	20MHz BW	3.3, 5, 12Vout 15, 24Vout		50mVp-p 75mVp-p		

Notes:

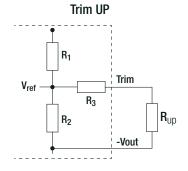
Note3: Measurements are made with a 10µF MLCC across output (low ESR)

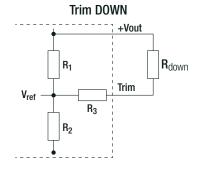
Efficiency vs. Load




continued on next page

Series


Specifications (measured @ Ta= 25°C, nominal input voltage, full load and after warm up unless otherwise specified)



OUTPUT VOLTAGE TRIMMING

It allows the user to increase or decrease the output voltage of the module. This is accomplished by connecting an external resistor between the Trim pin and either the +Vout or -Vout pins. With an external resistor between the -Vout and Trim pin, the output voltage increases. With an external resistor between the Trim and +Vout pin, the output voltage decreases. The values for trim resistors shown in trim tables below are according to standard E96 values; therefore, the specified voltage may slightly vary.

Vout	= nominal output voltage	[VDC]
Vout _{set}	= trimmed output voltage	[VDC]
V_{ref}	= reference voltage	[VDC]
R_{up}	= trim up resistor	$[\Omega]$
$R_{\scriptscriptstyle{down}}$	= trim down resistor	$[\Omega]$
R_1, R_2, R_3	= internal resistors	$[\Omega]$
$k_{_{u}}$	= trim up factor	[]
k _d	= trim down factor	[]

Vout _{nom}	3.3VDC	5VDC	12VDC	15VDC	24VDC			
R ₁	16.74kΩ	$10 \mathrm{k}\Omega$	38.1kΩ	$50 \mathrm{k}\Omega$	86.32k Ω			
R ₂			10kΩ					
R_3	52.3kΩ	35.7kΩ	48.7kΩ	51kΩ	73.2kΩ			
V _{ref}	1.24VDC	2.5VDC						

Calculation:

$$\mathbf{k}_{\mathbf{u}} = \begin{bmatrix} V_{\text{ref}} \\ Vout_{\text{set}} - V_{\text{ref}} \end{bmatrix} \times R_{1}$$

$$\mathbf{k}_{\mathbf{d}} = \begin{bmatrix} Vout_{\text{set}} - V_{\text{ref}} \\ V_{\text{rof}} \end{bmatrix} \times R_2$$

$$\mathbf{R}_{\mathbf{up}} = \left[\frac{\mathsf{k}_{\mathsf{u}} \times \mathsf{R}_{\mathsf{2}}}{\mathsf{R}_{\mathsf{2}} - \mathsf{k}_{\mathsf{u}}} \right] - \mathsf{R}_{\mathsf{3}}$$

$$\mathbf{R}_{\text{down}} = \begin{bmatrix} \frac{\mathbf{k}_{d} \times \mathbf{R}_{1}}{\mathbf{R}_{1} - \mathbf{k}_{d}} \end{bmatrix} - \mathbf{R}_{3}$$

continued on next page

Series

Specifications (measured @ Ta= 25°C, nominal input voltage, full load and after warm up unless otherwise specified)

Practical Example REC15-0505SZ trim up 10%

$$\mathbf{k}_{\mathbf{u}} = \begin{bmatrix} \frac{2.5}{5.5 - 2.5} \end{bmatrix} \times 10k = 8k33$$

$$\mathbf{R}_{up} = \begin{bmatrix} 8k33 \times 10k \\ 10k - 8k33 \end{bmatrix} - 35k7\Omega = \mathbf{14k2}\Omega$$

 \boldsymbol{R}_{up} according to E96 $\approx \underline{14k3\Omega}$

Practical Example REC15-0505SZ trim down 10%

$$\mathbf{k}_{d} = \left[\frac{4.5 - 2.5}{2.5} \right] \times 10k = 8k$$

$$\mathbf{R}_{\text{down}} = \begin{bmatrix} 8k \times 10k \\ 10k - 8k \end{bmatrix} - 35k7 = 4k3\Omega$$

 $\boldsymbol{R}_{\text{down}}$ according to E96 $\approx \underline{4k32\Omega}$

Calculated trim table

RS12-xx03.3SZ

Vout _{set} =	3.333	3.366	3.399	3.432	3.465	3.498	3.531	3.564	3.597	3.63	[VDC]
R_{down} (E96) \approx	1M15	357k	196k	127k	86k6	61k9	44k2	31k6	21k5	13k7	[Ω]
Vout _{set} =	3.267	3.234	3.201	3.168	3.135	3.102	3.069	3.036	3.003	2.97	[VDC]
R _{down} (E96) ≈	649k	357k	232k	165k	124k	92k1	71k5	54k9	42k2	31k6	[Ω]

RS12-xx05SZ

Vout _{set} =	5.05	5.10	5.15	5.20	5.25	5.30	5.35	5.4	5.45	5.50	[VDC]
R_{down} (E96) \approx	464k	215k	130k	88k7	64k9	47k5	35k7	26k7	20k	14k3	[Ω]
Vout _{set} =	4.95	4.90	4.85	4.80	4.75	4.70	4.65	4.60	4.55	4.5	[VDC]
R _{down} (E96) ≈	453k	205k	121k	78k7	54k9	37k4	25k5	16k9	9k76	4k32	[Ω]

RS12-xx12SZ

Vout _{set} =	12.12	12.24	12.36	12.48	12.60	12.72	12.84	12.96	13.08	13.20	[VDC]
R_{down} (E96) \approx	953k	392k	237k	162k	118k	88k7	68k1	53k6	41k2	32k4	[Ω]
Vout _{set} =	11.88	11.76	11.64	11.52	11.40	11.28	11.16	11.04	10.92	10.8	[VDC]
R_{down} (E96) \approx	2M43	1M27	866k	634k	499k	402k	332k	280k	243k	210k	[Ω]

RS12-xx15SZ

Vout _{set} =	15.15	15.3	15.45	15.60	15.75	15.90	16.05	16.20	16.35	16.50	[VDC]
R_{down} (E96) \approx	953k	402k	243k	165k	121k	93k1	71k5	56k2	43k2	34k	[Ω]
Vout _{set} =	14.85	14.70	14.55	14.40	14.25	14.10	13.95	13.80	13.65	13.5	[VDC]
R _{down} (E96) ≈	3M48	1M82	1M21	909k	715k	576k	487k	412k	357k	309k	[Ω]

RS12-xx24SZ

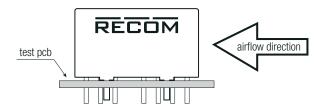
Vout _{set} =	24.24	24.48	24.72	24.96	25.2	25.44	25.68	25.92	26.16	26.4	[VDC]
R_{down} (E96) \approx	1M27	487k	287k	196k	143k	107k	84k5	66k5	52k3	42k2	[Ω]
Vout _{set} =	23.76	23.52	23.28	23.04	22.8	22.56	22.32	22.08	21.84	21.6	[VDC]
R _{down} (E96) ≈	5M62	3M16	2M15	1M62	1M3	1M07	909k	768k	665k	590k	[Ω]

REGULATIONS							
Parameter	Condition	Values					
Output Accuracy		±1.0% max.					
Line Regulation	low line to high line	±0.5% max.					
Load Regulation	0% to 100% load	1.0% max.					

Series

Specifications (measured @ Ta= 25°C, nominal input voltage, full load and after warm up unless otherwise specified)

Con	dition	Value
below	100mΩ	continuous, automatic recovery
		150% typ.
tooted for 1 minute	I/P to O/P	3kVDC
tested for a militate	I/P (O/P) to metal case	1.5kVDC
		2200pF typ.
		1G Ω min.
		functional
		tested for 1 minute


Note4: For repeat Hi-Pot testing, reduce the time and/or the test voltage

Note5: Refer to local safety regulations if input over-current protection is also required. Recommended fuse: slow blow type

ENVIRONMENTAL			
Parameter	Condition		Value
Operating Temperature Range (6)			-40°C to refer to "Thermal Calculation"
Maximum Case Temperature			+105°C
Temperature Coefficient			±0.05%/K
	0.25m/s (natural convection	n)	19.7K/W
Thermal Impedance (6)	1m/s		14.9K/W
	1.5m/s		13.1K/W
Operating Altitude	according to 62368-1		5000m
Operating Humidity			5% - 95% RH max.
Pollution Degree			PD2
Vibration			according to MIL-STD-202G
MTBF	according to MIL-HDBK-217F, G.B.	+25°C	1338 x 10 ³ hours

Notes:

Note6: Test PCB:160x100mm105µm (Eurocard), double layer, vertical mounted + refer to airflow direction below

Thermal Calculation

η

 $T_{\text{case max.}} = \text{case temperature}$ [°C] [K] = temperature losses = ambient temperature [°C] = nom. output power [W]= output power set [W]= internal losses [W] = thermal impedance [K/W] = efficiency under given operating conditions [%]

$$P_{diss} = \frac{P_{out \, set}}{\eta} - P_{out \, set}$$

$$T_{over} = R_{th} x P_{diss}$$

Specifications (measured @ Ta= 25°C, nominal input voltage, full load and after warm up unless otherwise specified)

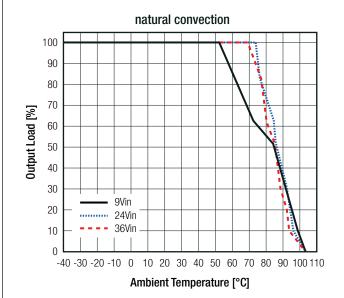
Practical Example:

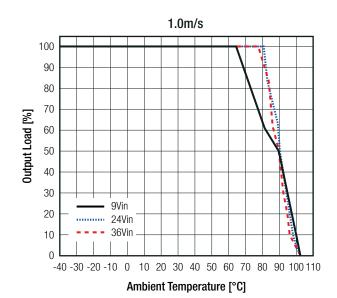
Take the **RS12-2405SZ** with 24V Input Voltage, 75% load, **1.0m/s airflow.** ⁽⁶⁾ What is the maximum operating ambient temperature?

$$T_{\text{case max.}} = 105^{\circ}\text{C}$$

$$R_{th} = 14.9 \text{K/W} (1.0 \text{m/s})$$

$$\eta$$
 = 87% (Eff. vs Load Graph)

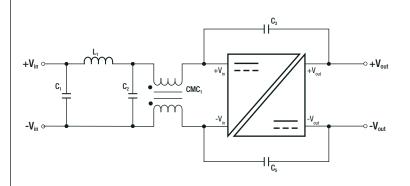

$$P_{\text{diss}} = \frac{9}{0.88} - 9 = 1.23W$$


$$T_{over} = 14.9 \times 1.23 = 18.3 K$$


$$T_{amb} = 105 - 18.3 = 86.7$$
°C

Derating Graph (R12S-2405SZ)

(@ Chamber - tested with double layer PCB: 160x100mm 105µm Eurocard)



Series

Specifications (measured @ Ta= 25°C, nominal input voltage, full load and after warm up unless otherwise specified)

SAFETY AND CERTIFICATIONS				
Certificate Type	Report / File Number	Standard		
Audio/video, information and communication technology equipment. Safety requirements (CB)	1912033-3-CB	IEC62368-1:2014 2nd Edition		
Audio/video, information and communication technology equipment. Safety requirements		EN62368-1:2014+A11:2017		
Audio/video, information and communication technology equipment. Safety requirements	E224736-A6002-UL	UL62368-1, 2nd Edition CAN/CSA-C22.2 No. 62368-1-14		
RoHS2+		RoHS-2011/65/EU + AM-2015/863		
EMC Compliance	Condition	Standard / Criterion		
Electromagnetic compatibility of multimedia equipment - Emission requirements	with external filter	EN55032, Class A		
Electionagnetic compatibility of multimedia equipment - Emission requirements	(refer to "EMC Filtering")	EN55032, Class B		
ESD Electrostatic discharge immunity test	Air ±8kV	EN61000-4-2, Criteria <i>i</i>		
Libertiostatic discribing infinitinity test	Contact ±6kV	ENOTOGO-4-2, CITIEITA A		
Radiated, radio-frequency, electromagnetic field immunity test	10V/m	EN61000-4-3, Criteria A		
Fast Transient and Burst Immunity	±2kV	EN61000-4-4, Criteria A		
Surge Immunity	±2kV	EN61000-4-5, Criteria A		
Immunity to conducted disturbances, induced by radio-frequency fields	10V/rms	EN61000-4-6, Criteria A		
Power Magnetic Field Immunity	10A/m	EN61000-4-8, Criteria A		

EMC Filtering Suggestions according to EN55032 (7)

Component List Class A

MODELS	C ₁	L ₁	C ₂	CMC ₁	C ₃ & C ₄
RS12-2405SZ		18µН <u>RLS-186</u>	10μF	N/A	1nF
RS12-2412SZ	N/A				
RS12-2424SZ					

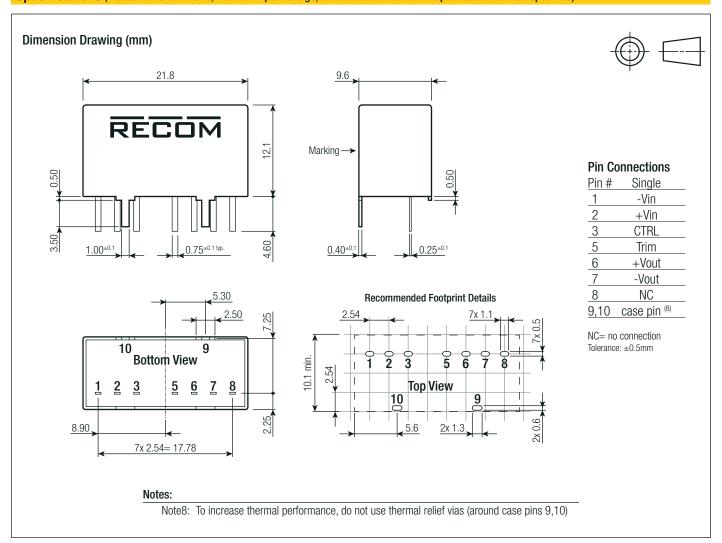
Component List Class B

MODELS	C ₁	L ₁	C ₂	CMC ₁	C ₃ & C ₄
RS12-2405SZ		40.11			
RS12-2412SZ	10μF	18µH RLS-186	10μF	11µH	2.2nF
RS12-2424SZ		<u>NL3-100</u>			

Notes:

Note7: Filter suggestions are valid for indicated part numbers only. For other part numbers, please contact RECOM tech support for advice.

DIMENSION and PHYSICAL CHARACTERISTICS			
Parameter	Туре	Value	
Material	case potting	metal epoxy, (UL94 V-0)	
Dimension (LxWxH)		21.8 x 12.1x 9.6mm	
Weight		8.5g	


continued on next page

www.recom-power.com REV.: 1/2020 EC0-7

Series

Specifications (measured @ Ta= 25°C, nominal input voltage, full load and after warm up unless otherwise specified)

PACKAGING INFORMATION			
Parameter	Туре	Value	
Packaging Dimension (LxWxH)	tube	520.0 x 14.6 x 20.0mm	
Packaging Quantity		22pcs	
Storage Temperature Range		-55°C to +125°C	
Storage Humidity	non-condensing	95% RH max.	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by Recom Power manufacturer:

Other Similar products are found below:

ESM6D044440C05AAQ FMD15.24G PSL486-7LR Q48T30020-NBB0 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S 18952 19-130041
CE-1003 CE-1004 GQ2541-7R RDS180245 MAU228 J80-0041NL DFC15U48D15 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS2415 XKS-1215 06322 NCT1000N040R050B SPB05B-15 SPB05C-15 L-DA20 DCG40-5G QME48T40033-PGB0 XKS-2415 XKS-2412
XKS-1212 XKS-1205 XKS-0515 XKS-0505 XGS-2405 XGS-1215 XGS-0515 PS9Z-6RM4 73-551-5038I AK1601-9RT VI-N61-CM VIR5022-EXWW PSC128-7iR RPS8-350ATX-XE DAS1004812 VI-LJ11-iz PQA30-D24-S24-DH VI-M5F-CQ VI-LN2-EW