RPC-1AS-A230

Output circuit - contact data

Number and type of contacts	
Contact material	AC
Rated switching voltage	AC5a
Rated load	AC5b
Rated current	
Max. breaking capacity	
Min. breaking capacity	
Contact resistance	
Max. operating frequency	
Input circuit	
Rated voltage	
Must release voltage	
Operating range of supply voltage	
Rated power consumption	
Range of supply frequency	AC
Control contact S ©	• min. voltage ©

Insulation according to EN 60664-1
Insulation rated voltage
Rated surge voltage
Overvoltage category
Insulation pollution degree
Flammability class

Dielectric strength	• input - output
	\bullet contact clearance

General data

Electrical life \quad • resistive AC1	
Mechanical life (cycles)	
Dimensions $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$ / Weight	
Ambient temperature	• storage
(non-condensation and/or icing)	• operating

Cover protection category
Relative humidity
Shock / vibration resistance
Time module data
Functions
Time ranges
Timing adjustment
Setting accuracy / Repeatability
Values affecting the timing adjustment
Recovery time
LED indicator

- Staircase switches - switching lighting circuits equipped with gas-discharge lamps or bulbs
- Multifunction time relays (5 time functions; 10 time ranges)
- Cadmium - free contacts 1 NO • AC input voltages
- Cover - modular, width $17,5 \mathrm{~mm}$ • Direct mounting on 35 mm rail mount acc. to EN 60715 • Applications: in low-voltage systems
- Compliance with standard EN 61812-1
- Recognitions, certifications, directives: RoHS, ($\in \mathbb{E H}[$

1 NO
AgSnO_{2}
250 V
16 A / 250 V AC
3 A / 230 V AC 690 VA , gas-discharge lamps ©
230 V AC 1000 W , bulbs 1
16 A / 250 V AC
4000 VA
1 W 10 mA
$\leq 100 \mathrm{~m} \Omega$
600 cycles/hour at rated load AC1

230 V terminals A1, A2
$\geq 0,1 \mathrm{U}_{\mathrm{n}}$
0,9...1,1 Un
$\leq 3,5 \mathrm{VA} 50 \mathrm{~Hz}$
$48 . . .63 \mathrm{~Hz}$
0,7 Un
$\mathrm{AC}: \geq 50 \mathrm{~ms}$
10 m
10 mA

250 V AC
4000 V 1,2/50 s
III
2
V-0 UL 94
$4000 \mathrm{~V} \mathrm{AC} \mathrm{type} \mathrm{of} \mathrm{insulation:} \mathrm{basic}$
$1000 \mathrm{~V} \mathrm{AC} \mathrm{type} \mathrm{of} \mathrm{clearance:} \mathrm{micro-disconnection}$
$>0,5 \times 10^{5} \quad 16 \mathrm{~A}, 250 \mathrm{~V}$ AC
$>3 \times 10^{7}$
90 ¢ $\times 17,5 \times 64,6 \mathrm{~mm} / 66 \mathrm{~g}$
$-30 . . .+70^{\circ} \mathrm{C}$
$-20 . . .+50^{\circ} \mathrm{C}$
IP 20 EN 60529
up to 85\%
$15 \mathrm{~g} / 0,35 \mathrm{~mm}$ DA $10 \ldots . .55 \mathrm{~Hz}$
ON, OFF, AUTO, R, Wi, Extra Time
1 s © ; $10 \mathrm{~s} ; 20 \mathrm{~s} ; 30 \mathrm{~s}$; 1 min.; 1,5 min.; 2 min.; 3 min.; 5 min.; 10 min.
$\pm 5 \%$ © ¢ / $\pm 0,5 \%$ ¢
temperature: $\pm 0,05 \% /{ }^{\circ} \mathrm{C}$ supply voltage: $\pm 0,01 \% / \mathrm{V}$
AC: $\leq 150 \mathrm{~ms}$
green LED U ON - indication of supply voltage U green LED U flashing - measurement of T time yellow LED R ON/OFF - output relay status

(1) Acc. to EN 60669-2-1; AC5a - without an additional capacitor or test with a $14 \mu \mathrm{~F}$ capacitor. (2) The control terminal S is activated by connection to A1 terminal via the external control contact S . (3) Where the control signal is recognizable. (4) Length with 35 mm rail catches: $98,8 \mathrm{~mm}$. 6 For first range setpoint (1 s) setting accuracy and repeatability are smaller than the given ones in technical parameters (significant influence of the operational relay operating time, processor start-time, and the moment of supply switching as referred to the AC supply course). (6 Calculated from the final range values, for the setting direction from minimum to maximum.

Time functions

ON - Stable ON.

Applying the supply voltage U results in stable switching on the R contact. Switching the control contact S does not affect the status of the R contact.

OFF - Stable OFF.

Applying the supply voltage U does not result in any change of the status of the relay - the R contact remains switched off permanently. Switching the control contact S on and off does not affect the status of the R contact.

AUTO - ON for a set interval triggered by applying the supply voltage U or closing of the control contact S .

Each application of the supply voltage U or closing of the control contact S while supply voltage U is applied results in immediate switching the R contact on for an adjustable interval T . After the T interval has lapsed, the R contact remains off. Opening and closing of the control contact S within the T interval does not affect the function to be fulfilled.

If the AUTO function is activated in the "Extra Time" Mode, after the Tinterval has lapsed, the R contact is switched off for 1 s , and switched on again for 10 s . After the time of 10 s has been measured, the R contact is switched off.
\mathbf{U} - supply voltage; \mathbf{R} - output state of the relay; \mathbf{S} - control contact state; \mathbf{T} - measured time; \mathbf{t} - time axis

R-OFF delay with the control contact S.

The input of the time relay is supplied with voltage U continuously. Closing of the control contact S immediately switches on the output relay R. Opening of the control contact S starts the set time of the delayed switching off of the output relay R. After the interval T has lapsed, the output relay R switches off. If the control contact S is closed during the interval T , the already measured time is reset, and the output relay R is switched on again. The OFF delay of the output relay R will start when the control contact S is opened again.

If the R function is activated in the "Extra Time" Mode, after the T interval has lapsed, the R contact is switched off for 1 s , and switched on again for 10 s . After the time of 10 s has been measured, the R contact is switched off.

Wi-ON for the set interval controlled by closing of the control contact S , with the function of switching off the output relay R prior to the lapse of the interval T .

The input of the time relay is supplied with voltage U continuously. Closing of the control contact S immediately switches the output relay R on for the set interval T . After the interval T has lapsed, the output relay R is switched off. Any next closing of the control contact S switches on the output relay R again. In case the control contact S is closed again during the interval T , the output relay is immediately switched off, and the measured interval is cancelled. In the course of the interval T, any opening of the control contact S does not affect the function to be performed.

If the Wi function is activated in the "Extra Time" Mode, after the T interval has lapsed, the R contact is switched off for 1 s , and switched on again for 10 s . After the time of 10 s has been measured, the R contact is switched off.

Additional functions

Supply diode: it is lit permanently when the time is not being measured. In course of the T time measurement, it flashes at 500 ms period where it is lit for 50% of the time, and off for 50% of the time.

Adjustment of the set values:

- the values of time and range are read in the course of the relay's operation. The set values may be modified at any moment,
- it is possible to change the function during operation of the relay, which results in triggering operation with a new setting. It is not necessary to switch the supply off and on again for the relay to start operating with a new setting.

Triggering: depending on the function to be performed, the relay is triggered with the supply voltage or by connection of the S contact to the A 1 line.

Supply: the relay may be supplied with AC voltage $48 \ldots 63 \mathrm{~Hz}$ with a nominal value 230 V .

(2) The control terminal S is activated by connection to A1 terminal via the external control contact S .

Front panel description

Dimensions

Mounting

Relays RPC-1AS-A230 are designed for direct mounting on 35 mm rail mount acc. to EN 60715. Operational position - any. Connections: max. cross section of the cables: $1 \times 2,5 \mathrm{~mm}^{2}(1 \times 14$ AWG), stripping length: $6,5 \mathrm{~mm}$, max. tightening moment for the terminal: $0,5 \mathrm{Nm}$.

Two catches:
easy mounting on 35 mm rail,
firm hold (top and bottom).

Mounting wires in clamps:

universal screw (cross-recessed or slotted head).

Ordering codes

Example of ordering codes:
RPC-1AS-A230
time relay RPC-1AS-A230, multifunction (relay perform 5 functions), cover - modular, width $17,5 \mathrm{~mm}$, one normally open contact, contact material AgSnO_{2}, rated input voltage 230 V AC $50 / 60 \mathrm{~Hz}$

PRECAUTIONS:

1. Ensure that the parameters of the product described in its specification provide a safety margin for the appropriate operation of the device or system and never use the product in circumstances which exceed the parameters of the product. 2. Never touch any live parts of the device. 3. Ensure that the product has been connected correctly. An incorrect connection may cause malfunction, excessive heating or risk of fire. 4. In case of any risk of any serious material loss or death or injuries of humans or animals, the devices or systems shall be designed so to equip them with double safety system to guarantee their reliable operation.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Timers category:
Click to view products by Relpol manufacturer:
Other Similar products are found below :
79237785 H3DS-GL AC24-230/DC24-48 H5AN-4DM DC12-24 H5CN-XDNM AC100-240 H5CN-YAN AC100-240 H5CX-L8S-N AC100240 H3AMNSCAC100240 H3AM-NSR-B AC100-240 H3CA-8 DC12 H3CR-A8-302 DC24 H3CR-F AC24-48/DC12-48 H3CR-G8EL AC200-240 H5AN-4D DC12-24 8150694488225029 H5S-YB4-X H3CR-A-301 AC100-240/DC100-125 H3CR-AS AC24-48/DC12-48 H3DK-GE AC240-440 H3RN-2 AC24 H3RN-21 AC24 H3CR-H8RL AC/DC24 M H3CR-H8RL AC100-120 S H3CR-G8EL-31 AC100-120 H3CR-H8RL AC100-120 M H3CR-HRL AC100-120 M H3CR-A8-301 AC24-48/DC12-48 H3CR-H8RL AC/DC24 S H7AN-2D DC12-24 H5CN-XANS DC12-48 H3CA-8 DC110 H7AN-W4DM DC12-24 H7AN-4DM DC12-24 H7AN-4D DC12-24 H7AN-RT6M AC100-240 H3CA-8H AC200/220/240 MTR17-BA-U240-116 PM4HSDM-S-AC240VS PM4HSDM-S-AC240VSW PO-405 600DT-CU H3Y-2-B DC24 30S PM4HF8-M-DC24V PM4HS-H-DC12VSW H3Y-2-B AC100-120 10S H3Y-2-B AC100-120 30S H3C-R H3CR-A8-301 24-48AC/1248DC H3CR-A8E 24-48AC/DC H3CR-F8 100-240AC/100-125DC

