time relays

RPC-2A-UNI

- Operation following supply voltage decay - with the
operational relay on, contact holding time up to 10 minutes
- Multifunction time relays (6 time functions; 10 time ranges)
- Cadmium - free contacts 2 CO •AC/DC input voltages
- Cover - modular, width $17,5 \mathrm{~mm} \cdot$ Direct mounting on 35 mm rail mount acc. to EN 60715 • Applications: in low-voltage systems
- Compliance with standard EN 61812-1
- Recognitions, certifications, directives: RoHS, (\in EH[

Output circuit - contact data

Number and type of contacts	
Contact material	
Max. switching voltage	AC
Rated load	AC1
	DC1
Rated current	
Max. breaking capacity	AC1
Min. breaking capacity	
Contact resistance	
Max. operating frequency	
- at rated load	AC1
Input circuit	
Rated voltage	AC: $50 / 60 \mathrm{~Hz} \mathrm{AC/DC}$
Must release voltage	
Operating range of supply voltage	
Rated power consumption	AC
	DC
Range of supply frequency	AC
Insulation according to EN 60664-1	
Insulation rated voltage	
Rated surge voltage	
Overvoltage category	
Insulation pollution degree	
Flammability class	
Dielectric strength	- input - output - contact clearance - pole - pole

2 CO
AgSnO_{2}
300 V
8 A / 250 V AC
8 A / 24 V DC; 0,3 A / 250 V DC
8 A / 250 V AC
2000 VA
1 W 10 mA
$\leq 100 \mathrm{~m} \Omega$
600 cycles/hour
12... 240 V terminals (+)A1, (-)A2
$\geq 0,1 \mathrm{U}_{\mathrm{n}}$
$0,9 \ldots 1,1 \mathrm{U}_{n}$
$\leq 1,5 \mathrm{VA}$ AC: 50 Hz
$\leq 1,5 \mathrm{~W}$
$48 . . .63 \mathrm{~Hz}$

250 V AC

```
4000 V 1,2/50\mus
```

III
2

V-0	UL 94
4000 V AC	type of insulation: basic
1000 V AC	type of clearance: micro-disconnection
2000 V AC	type of insulation: basic

$>3 \times 10^{7}$
90 © $\times 17,5 \times 64,6 \mathrm{~mm}$
72 g
$-40 \ldots+70^{\circ} \mathrm{C}$
$-20 \ldots+50^{\circ} \mathrm{C}$
IP 20 EN 60529
up to 85%
$15 \mathrm{~g} / 0,35 \mathrm{~mm}$ DA $10 . . .55 \mathrm{~Hz}$
$\mathrm{E}, \mathrm{A}, \mathrm{nWa}, \mathrm{nWu}, \mathrm{nWuWa}, \mathrm{nWs}$
1 s ($; 10 \mathrm{~s} ; 20 \mathrm{~s} ; 30 \mathrm{~s} ;$
1 min.; 1,5 min.; 2 min.; 3 min.; 5 min.; 10 min.
smooth - ($0,1 \ldots 1$) x time range
$\pm 5 \%$ (3
$\pm 0,5 \%$ (2)

temperature: $\pm 0,05 \% /{ }^{\circ} \mathrm{C}$	supply voltage: $\pm 0,01 \% / \mathrm{V}$
$\mathrm{AC}: \leq 400 \mathrm{~ms}$	$\mathrm{DC}: \leq 150 \mathrm{~ms}$

green LED U ON - indication of supply voltage U
green LED U flashing - measurement of T time yellow LED R ON/OFF - output relay status
(1) Length with 35 mm rail catches: $98,8 \mathrm{~mm}$. (2) For first range setpoint (1 s) setting accuracy and repeatability are smaller than the given ones in technical parameters (significant influence of the operational relay operating time, processor start-time, and the moment of supply switching as referred to the AC supply course). (3 Calculated from the final range values, for the setting direction from minimum to maximum.

Time functions

E - ON delay.

On applying the supply voltage U the set interval T begins - off-delay of the output relay R. After the interval T has lapsed, the output relay R switches on and remains on until supply voltage U is interrupted.

A - OFF delay without supply voltage.

When the supply voltage U is supplied, the output relay R switches into on-position (green LED U illuminated). If the supply voltage is interrupted (green LED U not illuminated), the set interval T begins. After the set interval T has lapsed, the output relay R switches into off-position. If the supply voltage is reconnected before the interval T has lapsed, the interval already measured is erased and is restarted with the next cycle.
nWa - Maintained single shot trailing edge.

When the supply voltage U is supplied, the output relay R remains in off-position (green LED U illuminated). As soon as the supply voltage is interrupted, the output relay switches into on-position and the set interval T begins (green LED not illuminated). After the set interval T has lapsed, the output relay switches into off-position. When the supply voltage is reconnected before the interval T has lapsed, the unit continues to perform the actual single shot.

[^0]nWu - Maintained single shot leading edge.

When the supply voltage U is applied (green LED U illuminated), the output relay R switches into on-position and the set interval T begins (green LED U flashes). After the interval T has lapsed, the output relay switches into off-position. This status remains until the supply voltage is interrupted. If the supply voltage is reconnected before the interval T has lapsed, the unit continues to perform the actual single shot.
nWuWa - Maintained single shot leading and trailing edge.

When the supply voltage U is applied, the output relay R switches into on-position and the set interval T begins (green LED U illuminated). After the interval T has lapsed, the output relay switches into off-position. As soon as the supply voltage is interrupted the output relay switches into on-position again, and the set interval T begins (green LED not illuminated). After the set interval T has lapsed, the output relay switches into off-position. If the supply voltage is interrupted (nWu) or reconnected (nWa) before the interval T has lapsed, the unit continues to perform the actual single shot.
nWs - Latching ON delay.

Applying the supply voltage U triggers the operation with delay in switching on the R contact by the set T interval. The R contact is switched on after the delay interval has lapsed. Interrupting the supply voltage while the R contact starts measurement of the T interval after which the R contact is to be switched off. After the T interval of switching the R contact off has lapsed, the R contact is switched off. Interruption of the supply voltage U while ON-delay by the set T interval is being measured for the R contact stops measurement of the T interval and switches the R contact immediately for the set T interval; after the interval has lapsed, the R contact is switched off. Applying the supply voltage U when the T interval is being measured for the R contact to be switched off stops measurement of the interval, switches the R contact off, and starts measurement of ON-delay for the R contact.

Additional functions

Green supply diode:

- when supply of the relay is on: it is lit permanently when the time is not being measured. In course of the T time measurement, it flashes at 500 ms period where it is lit for 50% of the time, and off for 50% of the time, - when supply of the relay is off: it is not illuminated.

Yellow diode R

- when the supply voltage is on: the diode is permanently illuminated for the R relay switched on,
- when the supply voltage is off, and the output relay R is on: the time range 1 s - it is illuminated permanently; time ranges $10 \mathrm{~s}, 20 \mathrm{~s}, 30 \mathrm{~s}$: a blink of 30 ms every 1 s ; time ranges longer than 1 min : a blink of 30 ms every 10 s .

Adjustment of the set values

- no change of the time value and range is possible when the relay operates. Any chnage of the time setting shall be read only after the supply voltage has been interrupted and reconnected,
- no change of the function is possible in the course of the relay's operation. Any change of the settings of the relay shall be read only after the supply voltage has been switched off and on again.

Release: depending on the function to be performed, the relay is released with the supply voltage or by connection of the S contact to the A1 line. For DC supply, the positive pole must be connected to the A1 line. The level of the S contact activation is adjusted automatically depending on the supply voltage.

Supply: the relay may be supplied with DC voltage or AC voltage $48 \ldots 63 \mathrm{~Hz}$ of $10,8 \ldots 264 \mathrm{~V}$.

Dimensions

Connection diagram

2 CO

RPC-2A-UNI

time relays

Front panel description

Mounting

Relays RPC-2A-UNI are designed for direct mounting on 35 mm rail mount acc. to EN 60715. Operational position - any. Connections: max. cross section of the cables: $1 \times 2,5 \mathrm{~mm}^{2}(1 \times 14$ AWG), stripping length: $6,5 \mathrm{~mm}$, max. tightening moment for the terminal: $0,5 \mathrm{Nm}$.

Two catches:
easy mounting on 35 mm rail, firm hold (top and bottom).

Mounting wires

in clamps:
universal screw
(cross-recessed or slotted head).

Ordering codes

Type \quad Number and type \quad Time functions \quad Rated input voltage

Example of ordering codes:
RPC-2A-UNI time relay RPC-2A-UNI, multifunction (relay perform 6 functions), cover - modular, width $17,5 \mathrm{~mm}$, two changeover contacts, contact material AgSnO_{2}, rated input voltage 12... 240 V AC/DC AC: $50 / 60 \mathrm{~Hz}$

PRECAUTIONS:

1. Ensure that the parameters of the product described in its specification provide a safety margin for the appropriate operation of the device or system and never use the product in circumstances which exceed the parameters of the product. 2. Never touch any live parts of the device. 3. Ensure that the product has been connected correctly. An incorrect connection may cause malfunction, excessive heating or risk of fire. 4. In case of any risk of any serious material loss or death or injuries of humans or animals, the devices or systems shall be designed so to equip them with double safety system to guarantee their reliable operation.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Timers category:
Click to view products by Relpol manufacturer:
Other Similar products are found below :
79237785 H3DS-GL AC24-230/DC24-48 H5AN-4DM DC12-24 H5CN-XDNM AC100-240 H5CN-YAN AC100-240 H5CX-L8S-N AC100240 H3AMNSCAC100240 H3AM-NSR-B AC100-240 H3CA-8 DC12 H3CR-A8-302 DC24 H3CR-F AC24-48/DC12-48 H3CR-G8EL AC200-240 H5AN-4D DC12-24 8150694488225029 H5S-YB4-X H3CR-A-301 AC100-240/DC100-125 H3CR-AS AC24-48/DC12-48 H3DK-GE AC240-440 H3RN-2 AC24 H3RN-21 AC24 H3CR-H8RL AC/DC24 M H3CR-H8RL AC100-120 S H3CR-G8EL-31 AC100-120 H3CR-H8RL AC100-120 M H3CR-HRL AC100-120 M H3CR-A8-301 AC24-48/DC12-48 H3CR-H8RL AC/DC24 S H7AN-2D DC12-24 H5CN-XANS DC12-48 H3CA-8 DC110 H7AN-W4DM DC12-24 H7AN-4DM DC12-24 H7AN-4D DC12-24 H7AN-RT6M AC100-240 H3CA-8H AC200/220/240 MTR17-BA-U240-116 PM4HSDM-S-AC240VS PM4HSDM-S-AC240VSW PO-405 600DT-CU H3Y-2-B DC24 30S PM4HF8-M-DC24V PM4HS-H-DC12VSW H3Y-2-B AC100-120 10S H3Y-2-B AC100-120 30S H3C-R H3CR-A8-301 24-48AC/1248DC H3CR-A8E 24-48AC/DC H3CR-F8 100-240AC/100-125DC

[^0]: \mathbf{U} - supply voltage; \mathbf{R} - output state of the relay;
 \mathbf{T} - measured time; \mathbf{t} - time axis

