time relays

- Immediate activation of the selected function - without having to temporarily turn off the power supply
- Multifunction time relays (10 time functions; 8 time ranges)
- Cadmium - free contacts 1 CO and $3 \mathrm{CO} \cdot \mathrm{AC} / \mathrm{DC}$ input voltages
- Cover - modular, width $17,5 \mathrm{~mm} \cdot$ Direct mounting on 35 mm rail mount acc. to EN 60715 - Applications: in low-voltage systems
- Compliance with standard EN 61812-1
- Recognitions, certifications, directives: RoHS, ($\in \mathbb{E H [}$

Output circuit - contact data

Number and type of contacts	
Contact material	
Max. switching voltage	AC
Rated load	AC1
	DC1
	DC1
Rated current	
Max. breaking capacity	AC1
Min. breaking capacity	
Contact resistance	
Max. operating frequency	
Input circuit	
Rated voltage	AC: $50 / 60 \mathrm{~Hz} \mathrm{AC/DC}$
Must release voltage	
Operating range of supply voltage	
Rated power consumption	AC
	DC
Range of supply frequency	AC

Insulation according to EN 60664-1
Insulation rated voltage
Rated surge voltage
Overvoltage category
Insulation pollution degree
Flammability class

Dielectric strength	• input - output
	• contact clearance
	• pole - pole

General data

Electrical life •r	
Mechanical life (cycles)	
Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)	
Weight	
Ambient temperature (non-condensation and/or icing)	- storage - operating
Cover protection category	
Relative humidity	
Shock / vibration resistance	
Time module data	
Functions	
Time ranges	
Timing adjustment	
Setting accuracy / Repeat	
Values affecting the timing	
Recovery time	
LED indicator	

1 CO	3 CO
AgSnO_{2}	
300 V	
$16 \mathrm{~A} / 250 \mathrm{~V}$ AC	8 A / 250 V AC
16 A / 24 V DC	$8 \mathrm{~A} / 24 \mathrm{~V}$ DC
0,3 A / 250 V DC	0,2 A / 250 V DC
$16 \mathrm{~A} / 250 \mathrm{~V}$ AC	$8 \mathrm{~A} / 250 \mathrm{~V}$ AC
4000 VA	2000 VA
1 W 10 mA	
$\leq 100 \mathrm{~m} \Omega$	
600 cycles/hour at rated load AC1	
12... 240 V terminals (+)A1, (-)A2	
$\geq 0,1 \mathrm{U}_{\mathrm{n}}$	
0,9...1,1 Un	
$\leq 1,5 \mathrm{VA}$ AC: 50 Hz$\leq 1,5 \mathrm{~W}$	
48... 63 Hz	
0,7 Un	
$\begin{array}{ll}\text { AC: } \geq 50 \mathrm{~ms} \\ 10 \mathrm{~m}\end{array} \quad \mathrm{DC}: \geq 30 \mathrm{~ms}$	
250 V AC	
$4000 \mathrm{~V} \quad 1,2 / 50 \mu \mathrm{~s}$	
III	
2	
cover: V-0 front panel: V-2	UL 94
4000 V AC type of insulation: basic 1000 V AC type of clearance: micro-disconnection 2000 V AC contacts 3 co, type of insulation: basic	
$>0,5 \times 10^{5} \quad 16 \mathrm{~A}, 8 \mathrm{~A}, 250 \mathrm{~V} \mathrm{AC}$	
$>3 \times 10^{7}$	
$90 \circledast \times 17,5 \times 64,5 \mathrm{~mm}$	
contact $1 \mathrm{CO}: 65 \mathrm{~g}$	contacts 3 CO: 88 g
$-40 . . .70^{\circ} \mathrm{C}$	
$-20 \ldots+50^{\circ} \mathrm{C}$	
IP 20 EN 60529	
up to 85%	
$15 \mathrm{~g} / 0,35 \mathrm{~mm}$ DA $10 \ldots . .55 \mathrm{~Hz}$	
E, Wu, Bp, Bi, R, Ws, Wa, Esa, B, T	
OFF - permanent switching off; ON - permanent switching on 1 s © ; $10 \mathrm{~s} ; 1$ min.; 10 min.; $1 \mathrm{~h} ; 10 \mathrm{~h} ; 1 \mathrm{~d} ; 10 \mathrm{~d}$	
smooth - ($0,1 . .1$) x time range (does not refer to range ON / OFF)	
$\pm 5 \%$ © ¢ / $\pm 0,5 \%$ ©	
temperature: $\pm 0,05 \% /{ }^{\circ} \mathrm{C}$	pply voltage: $\pm 0,01 \% / \mathrm{V}$
$\mathrm{AC}: \leq 400 \mathrm{~ms}$	C : 150 ms
green LED U ON - indication green LED U flashing - measu yellow LED R ON/OFF - outpu	upply voltage U ment of T time lay status

(1) The control terminal S is activated by connection to A 1 terminal via the external control contact S . (2) Where the control signal is recognizable. (3) Length with 35 mm rail catches: $98,8 \mathrm{~mm}$. (4) For first range setpoint (1 s) setting accuracy and repeatability are smaller than the given ones in technical parameters (significant influence of the operational relay operating time, processor start-time, and the moment of supply switching as referred to the $A C$ supply course). 5 Calculated from the final range values, for the setting direction from minimum to maximum.

Time functions

E - ON delay.

On applying the supply voltage U the set interval T begins - off-delay of the output relay R. After the interval T has lapsed, the output relay R switches on and remains on until supply voltage U is interrupted.

Wu - ON for the set interval.

Applying the supply voltage U immediately switches the output relay R on for the set interval T. After the interval T has lapsed, the output relay R switches off.

Bp - Symmetrical cyclical operation pause first.

Applying the supply voltage U starts the cyclical operation from the interval T - switching the output relay R off followed by switching on the output relay R for the interval T . The cyclical operation lasts until the supply voltage U is interrupted.

Bi - Symmetrical cyclical operation pulse first.

Applying the supply voltage U starts the cyclical operation from switching on the output relay R for the set interval T. After the interval T has lapsed, the output relay R switches off for the interval T. The cyclical operation lasts until the supply voltage U is interrupted.

R-OFF delay with the control contact S.

The input of the time relay is supplied with voltage U continuously. Closing of the control contact S immediately switches on the output relay R. Opening of the control contact S starts the set time of the delayed switching off of the output relay R. After the interval T has lapsed, the output relay R switches off. If the control contact S is closed during the interval T , the already measured time is reset, and the output relay R is switched on again. The OFF delay of the output relay R will start when the control contact S is opened again.

Ws - Single shot for the set interval triggered by closing of the control contact S .

The input of the time relay is supplied with voltage U continuously. Closing of the control contact S immediately switches the output relay R on for the set interval T. After the interval T has lapsed, the output relay R is switched off. In the course of the interval T, any opening of the control contact S does not affect the function to be performed. The output relay R may be switched on again for the set interval, after the interval T has lapsed, by closing the control contact S again.

Wa - ON for the set interval triggered with the control contact S .

The input of the time relay is supplied with voltage U continuously. Closing of the control contact S does not start the interval T, and it does not change the position of the output relay R. Opening of the control contact S immediately switches on the output relay R for the set time. After the interval T has lapsed, the output relay R switches off. Opening and closing of the control contact S in the course of the interval T does not affect the function to be performed. The output relay R may be switched on again for the set interval with another closing and opening of the control contact S.

Esa - ON and OFF delay with the control contact S.

The input of the time relay is supplied with voltage U continuously. Closing of the control contact S starts the interval T-on-delay of the output relay R. After the interval T has lapsed, the output relay R switches on. Opening of the control contact S begins further measurement of the interval T - off-delay of the output relay R , and after the interval has lapsed, the output relay switches off. In case the time for which the control contact S is closed in the course of measurement of the on-delay of the output relay R is shorter than the set interval T, the output relay R will switch on after the set interval T, and the output relay R will remain in on position for the interval T . When the output relay R is in on position, closing of the control contact S does not affect the function to be performed.

[^0] \mathbf{T} - measured time; \mathbf{t} - time axis

Time functions

B - Cyclical operation controlled with closing of the control contact S.

The input of the time relay is supplied with U voltage continuously. Closing of the control contact S immediately switches on the output relay R. Each next closing of the control contact S results in a change of the status of the output relay R to an opposite one (the feature of a bistable relay).
\mathbf{U} - supply voltage; \mathbf{R} - output state of the relay; S - control contact state; \mathbf{T} - measured time; \mathbf{t} - time axis
\mathbf{T} - Generation of the $0,5 \mathrm{~s}$ pulse after the interval T .

Applying the supply voltage U starts the interval T. After the interval T has lapsed, the output relay switches on for $0,5 \mathrm{~s}$ (the time of the NO contact of the output relay).

ON / OFF - Permanent switching on / off.
The functions ON and OFF are selected with T time range adjusting knob. In the ON function, the normally open contacts are closed all the time whereas in the OFF function they are open. The position of the function--adjusting knob is of no significance in these functions as is the preset measurement time. The ON or OFF functions are used for the time relay operation control in electric systems.

Additional functions

Supply diode: it is lit permanently when the time is not being measured. In course of the T time measurement, it flashes at 500 ms period where it is lit for 50% of the time, and off for 50% of the time.

Adjustment of the set values

- the values of time and range are read in the course of the relay's operation. The set values may be modified at any moment,
- it is possible to change the function during operation of the relay, which results in triggering operation with a new setting. It is not necessary to switch the supply off and on again for the relay to start operating with a new setting.

Release: depending on the function to be performed, the relay is released with the supply voltage or by connection of the S contact to the A1 line. For DC supply, the positive pole must be connected to the A1 line. The level of the S contact activation is adjusted automatically depending on the supply voltage.

Supply: the relay may be supplied with DC voltage or AC voltage $48 . . .63 \mathrm{~Hz}$ of $10,8 . . .264 \mathrm{~V}$.

Dimensions

PRECAUTIONS:

1. Ensure that the parameters of the product described in its specification provide a safety margin for the appropriate operation of the device or system and never use the product in circumstances which exceed the parameters of the product. 2. Never touch any live parts of the device. 3. Ensure that the product has been connected correctly. An incorrect connection may cause malfunction, excessive heating or risk of fire. 4. In case of any risk of any serious material loss or death or injuries of humans or animals, the devices or systems shall be designed so to equip them with double safety system to guarantee their reliable operation.

RPC-.MD-UNI

time relays

Front panel description

Connection diagrams

(1) The control terminal S is activated by connection to A 1 terminal via the external control contact S.

Mounting

Relays RPC-.MD-UNI are designed for direct mounting on 35 mm rail mount acc. to EN 60715. Operational position - any. Connections: max. cross section of the cables: $1 \times 2,5 \mathrm{~mm}^{2}(1 \times 14$ AWG), stripping length: 6,5 mm, max. tightening moment for the terminal: $0,5 \mathrm{Nm}$.

Ordering codes

Examples of ordering codes:
RPC-1MD-UNI
time relay RPC-.MD-UNI, multifunction (relay perform 10 functions), cover - modular, width $17,5 \mathrm{~mm}$, one changeover contact, contact material AgSnO , rated input voltage 12... 240 V AC/DC AC: $50 / 60 \mathrm{~Hz}$

RPC-3MD-UNI time relay RPC-MD-UNI, multifunction (relay perform 10 functions), cover - modular, width $17,5 \mathrm{~mm}$, three changeover contacts, contact material AgSnO_{2}, rated input voltage 12... 240 V AC/DC AC: $50 / 60 \mathrm{~Hz}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Timers category:
Click to view products by Relpol manufacturer:
Other Similar products are found below :
79237785 H3DS-GL AC24-230/DC24-48 H5AN-4DM DC12-24 H5CN-XDNM AC100-240 H5CN-YAN AC100-240 H5CX-L8S-N AC100240 H3AMNSCAC100240 H3AM-NSR-B AC100-240 H3CA-8 DC12 H3CR-A8-302 DC24 H3CR-F AC24-48/DC12-48 H3CR-G8EL AC200-240 H5AN-4D DC12-24 8150694488225029 H5S-YB4-X H3CR-A-301 AC100-240/DC100-125 H3CR-AS AC24-48/DC12-48 H3DK-GE AC240-440 H3RN-2 AC24 H3RN-21 AC24 H3CR-H8RL AC/DC24 M H3CR-H8RL AC100-120 S H3CR-G8EL-31 AC100-120 H3CR-H8RL AC100-120 M H3CR-HRL AC100-120 M H3CR-A8-301 AC24-48/DC12-48 H3CR-H8RL AC/DC24 S H7AN-2D DC12-24 H5CN-XANS DC12-48 H3CA-8 DC110 H7AN-W4DM DC12-24 H7AN-4DM DC12-24 H7AN-4D DC12-24 H7AN-RT6M AC100-240 H3CA-8H AC200/220/240 MTR17-BA-U240-116 PM4HSDM-S-AC240VS PM4HSDM-S-AC240VSW PO-405 600DT-CU H3Y-2-B DC24 30S PM4HF8-M-DC24V PM4HS-H-DC12VSW H3Y-2-B AC100-120 10S H3Y-2-B AC100-120 30S H3C-R H3CR-A8-301 24-48AC/1248DC H3CR-A8E 24-48AC/DC H3CR-F8 100-240AC/100-125DC

[^0]: \mathbf{U} - supply voltage; \mathbf{R} - output state of the relay; S - control contact state;

