monitoring relays

- Multifunctions monitoring relays (6 versions of relays, AC current monitoring in 1-phase network, with adjustable thresholds (1)
- Minimum and maximum value monitoring - Windowfunction
- Fault latch mode - Tripping delay
- Cadmium - free contacts 1 CO • AC input voltages
- Cover - modular, width $17,5 \mathrm{~mm}$
- Direct mounting on 35 mm rail mount acc. to EN 60715
- Compliance with standard EN 50178
- Recognitions, certifications, directives: RoHS, (\in EH[

Output circuit - contact data

Number and type of contacts	
Contact material	AC
Max. switching voltage	AC1
Rated load	DC1
Rated current	AC1
Max. breaking capacity	
Min. breaking capacity	
Contact resistance	AC1
Max. operating frequency - at rated load	

Input circuit	
Supply voltage	AC
Rated voltage	$50 / 60 \mathrm{~Hz} \mathrm{AC}$
Must release voltage	
Operating range of supply voltage	
Rated power consumption	
Range of supply frequency	AC
Measuring circuit ©	
- measured value	

- measuring range
- overload capacity
- measuring terminals
- measuring range
- input resistance
- switching thresholds

Insulation according to EN 60664-1
Insulation rated voltage
Rated surge voltage
Overvoltage category
Insulation pollution degree
Flammability class
Dielectric strength

- input - output
- contact clearance

1 CO					
AgSnO_{2}					
300 V					
$12 \mathrm{~A} / 250 \mathrm{~V}$ AC					
$12 \mathrm{~A} / 24 \mathrm{~V}$ DC					
0,3 A / 250 V DC					
12 A / 250 V AC					
4000 VA					
1 W 10 mA					
$\leq 100 \mathrm{~m} \Omega$					
600 cycles/hour					
230 V					
230 V terminals (N)-L					
AC: $\geq 0,1 \mathrm{U}_{\mathrm{n}}$					
0,85...1,15 Un					
0,6 W					
$48 . . .63 \mathrm{~Hz}$					
electrical current AC, RMS value, 50 Hz AC sinus, $48 \ldots 63 \mathrm{~Hz}$					
RPN-1A05	RPN-1A1	RPN-1A2	RPN-1A5	RPN-1A8	RPN-1A16
0,5 A	1 A	2 A	5 A	8 A	16 A
2 A	4 A	8 A	6,5 A	11 A	20 A
Lk-N					
0,05...1,0 In_{n}					
$<5 \mathrm{~m} \Omega$					
MIN: 0,05...0,95 In		MAX: $0,1 \ldots 1,0 \mathrm{In}^{\text {n }}$			
250 V AC					
4000 V 1,2/50 $\mu \mathrm{s}$					
III					
2					
V-0 UL 94					
4000 V A	type	insulation:			
1000 V A	type	clearance:	ro-disconn		

(1) Codes of versions - see "Ordering codes", page 5.
(2) The measuring circuit is not galvanically insulated from the relay supply circuit.

RPN-1A..-A230

monitoring relays

General data

Electrical life •resistive AC1	$>0,5 \times 10^{5} \quad 12 \mathrm{~A}, 250 \mathrm{VAC}$
Mechanical life (cycles)	$>3 \times 10^{7}$
Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)	90 ® $\times 17,5 \times 64,6 \mathrm{~mm}$
Weight	72 g
Ambient temperature - storage	$-40 \ldots+70{ }^{\circ} \mathrm{C}$ $-20.60{ }^{\circ} \mathrm{C}$
(non-condensation and/or icing) - operating	$\begin{array}{ll}-20 \ldots+60^{\circ} \mathrm{C} \\ \text { IP } 20 & \\ \end{array}$
Relative humidity	up to 85\%
Shock resistance	15 g
Vibration resistance	0,35 mm DA $\quad 10 . . .55 \mathrm{~Hz}$
Meassuring circuit data ©	
Functions	OD (OVER D), OD+L (OVER D + LATCH), UD (UNDER D), UD+L (UNDER D + LATCH), WD (WIN D), WD+L (WIN D + LATCH)
Current ranges	MIN - smooth adjustment: 5...95\% MAX - smooth adjustment: 10...100\%
Time ranges of tripping delay	step adjustment: OFF - permanent switching off; $0,5 \mathrm{~s} ; 1 \mathrm{~s} ; 1,5 \mathrm{~s} ; 2 \mathrm{~s} ; 2,5 \mathrm{~s} ; 5 \mathrm{~s} ; 10 \mathrm{~s} ; 15 \mathrm{~s} ; 20 \mathrm{~s}$
Current setting accuracy	threshold limits: $\pm 10 \%$ (4)
Accuracy of delay time settings	threshold limits: $\pm 5 \% \boldsymbol{\oplus}$
Values affecting the timing adjustment - temperature - supply voltage	$\begin{aligned} & \pm 0,05 \% ~ / ~ \circ \\ & \pm 0 \\ & \pm 0,01 \% / V \end{aligned}$
Recovery time	$\leq 200 \mathrm{~ms}$
LED indicator ©	```green LED U - indication of supply voltage U, tripping delay, fault latch red LED I - indication of error yellow LED R - output relay status```

[^0]

Functions

General principle: for the correct operation of the relay the current setpoints should meet the MAX > MIN condition.

OD (OVER D) - Overcurrent monitoring (with delayed disconnection of contact R).

If the measured current has a value lower than MAX, then the operational relay R is switched on. When the measured current exceeds the MAX value, then after the set delay time the operational relay R will be switched off.
The operational relay R will be switched on again when the current falls below the MIN value.

OD+L (OVER D+LATCH) - Overcurrent monitoring with fault latch (with delayed disconnection of contact R).

If the measured current has a value lower than MAX, then the operational relay R is switched on. When the measured current exceeds the MAX value, then after the set delay time the operational relay R will be switched off.
The operational relay R will remain switched on until the "error memory" is reset (the supply voltage is disconnected and connected again). After resetting the power supply voltage the operational relay R is switched on if the measured current has a value lower than MAX. The control of the current in the circuit is then commenced in accordance with the selected function.

UD (UNDER D) - Undercurrent monitoring (with delayed disconnection of contact R).

If the measured current has a value higher than MIN, then the operational relay R is switched on. When the measured current is lower than MIN, then after the set delay time the operational relay R will be switched off.
The operational relay R will be switched on again when the current exceeds the MAX value.

UD+L (UNDER D+LATCH) - Undercurrent monitoring with fault latch (with delayed disconnection of contact R).

If the measured current has a value higher than MIN, then the operational relay R is switched on. When the measured current is lower than MIN, then after the set delay time the operational relay R will be switched off.
The operational relay R will remain switched on until the "error memory" is reset (the supply voltage is disconnected and connected again). After resetting the power supply voltage the operational relay R is switched on if the measured current has a value higher than MIN. The control of the current in the circuit is then commenced in accordance with the selected function.

WD (WIN D) - Current monitoring in windowfunction between MIN and MAX values (with delayed disconnection of contact R).

If the measured current is within the set window (MIN < measured I < MAX), then the operational relay R is switched on. When the measured current exceeds the set window between MIN and MAX (measured I < MIN or measured I > MAX), then after the set delay time the operational relay R will be switched off.
The operational relay R will be switched on again when the current is back within the set window (MIN < measured I < MAX).

WD+L (WIN D+LATCH) - Current monitoring in windowfunction between MIN and MAX values with fault latch (with delayed disconnection of contact R).

If the measured current is within the set window (MIN < measured I < MAX), then the operational relay R is switched on. When the measured current exceeds the set window between MIN and MAX (measured I < MIN or measured I > MAX), then after the set delay time the operational relay R will be switched off.
The operational relay R will remain switched on until the "error memory" is reset (the supply voltage is disconnected and connected again). After resetting the power supply voltage the operational relay R is switched on if the measured current is within the set window. The control of the current in the circuit is then commenced in accordance with the selected function.

U - supply voltage; I - current; MIN, MAX - set current thresholds; R - output state of the relay; LATCH - fault latch;
T-delay time; t - time axis
monitoring relays

Additional functions

LEDs: green U, red I - are lit permanently or flashes at 500 ms and 250 ms period where it is lit for 50% of the time, and off for 50% of the time. Yellow R is lit permanently.

Adjustment of the set values:

- the values of range of current and tripping delay are read in the course of the relay's operation. The set values may be modified at any moment,
- it is possible to change the function during operation of the relay, which results in triggering operation with a new setting. It is not necessary to switch the supply off and on again for the relay to start operating with a new setting.

Supply: the relay may be supplied with AC voltage $48 \ldots 63 \mathrm{~Hz}$ of $195,5 . . .264,5 \mathrm{~V}$.

LED indication	\mathbf{U}	\mathbf{I}	
green does not light up	power supply turned off	-	-
green lights up all the time	correct power supply	-	
green slow flashes	measurement of the tripping delay time	-	
green fast flashes	necessary error memory reset (power off and on)	-	-
red does not light up	-	-	-
red lights up all the time	-	setting error $\mathbf{7}$ or function error	-
red slow flashes	-	-	-
red fast flashes	-	-	-
yellow does not light up	-	-	-
yellowere has been an excess above MAX			

(7) Measured current outside the range of MIN and MAX threshold limits - required correction of settings.

Dimensions

Connection diagram

PRECAUTIONS:

1. Ensure that the parameters of the product described in its specification provide a safety margin for the appropriate operation of the device or system and never use the product in circumstances which exceed the parameters of the product. 2. Never touch any live parts of the device. 3. Ensure that the product has been connected correctly. An incorrect connection may cause malfunction, excessive heating or risk of fire. 4. In case of any risk of any serious material loss or death or injuries

Front panel description

Mounting

Relays RPN-1A..-A230 are designed for direct mounting on 35 mm rail mount acc. to EN 60715. Operational position - any. Connections: max. cross section of the cables: $1 \times 2,5 \mathrm{~mm}^{2}(1 \times 14 \mathrm{AWG})$, stripping length: $6,5 \mathrm{~mm}$, max. tightening moment for the terminal: $0,5 \mathrm{Nm}$.

Two catches:
easy mounting on 35 mm rail,
firm hold (top and bottom).

Mounting wires

in clamps:
universal screw
(cross-recessed or slotted head).

Ordering codes

Examples of ordering codes:
RPN-1A05-A230 monitoring relay RPN-1A05-A230, multifunction (relay perform 6 functions), cover - modular, width $17,5 \mathrm{~mm}$, one changeover contact, contact material AgSnO_{2}, rated input voltage 230 V AC $50 / 60 \mathrm{~Hz}$, monitored current max. 0,5 A / 230 V AC
RPN-1A16-A230 monitoring relay RPN-1A16-A230, multifunction (relay perform 6 functions), cover - modular, width $17,5 \mathrm{~mm}$, one changeover contact, contact material AgSnO , rated input voltage 230 V AC $50 / 60 \mathrm{~Hz}$, monitored current max. 16 A / 230 V AC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Relpol manufacturer:

Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 6-
1423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8
```


[^0]: (2) The measuring circuit is not galvanically insulated from the relay supply circuit. (3 Length with 35 mm rail catches: $98,8 \mathrm{~mm}$. (4) From a measured value in the range of $0,2 \ldots 1,0 \mathrm{ln}$. 5 Calculated from the final range values, for the setting direction from minimum to maximum. © LED indication - see "Additional functions", page 4.

