RPN-1VFT-A400

monitoring relays

RPN-1VFT-A400

- Multifunctions monitoring relays
(AC voltage monitoring in 3-phase network - 3(N)~ 400/230 V)
- Monitoring of phase failure, asymmetry, phase sequence
- Histeresis mode • Timing adjustment of tripping delay
- Cadmium - free contacts $1 \mathrm{CO} \cdot \mathrm{AC}$ input voltages
- Cover - modular, width $17,5 \mathrm{~mm}$
- Direct mounting on 35 mm rail mount acc. to EN 60715
- Compliance with standard EN 50178
- Recognitions, certifications, directives: RoHS, (\in EA[

1 CO
AgSnO_{2}
300 V
12 A / 250 V AC
12 A / 24 V DC
0,3 A / 250 V DC
12 A / 250 V AC
4000 VA
1 W 10 mA
$\leq 100 \mathrm{~m} \Omega$

600 cycles/hour
= monitoring voltage
3(N)~ 400/230 V
terminals (N)-L1-L2-L3
$\mathrm{AC}: \geq 0,2 \mathrm{U}_{n}$
when supplied from at least two phases: $0,7 \ldots 1,15 \mathrm{U}_{n}$
when supplied from single phase: $0,85 \ldots 1,15 \mathrm{U}_{\mathrm{n}}$
1,2 W
$48 \ldots 63 \mathrm{~Hz}$
electrical voltage, RMS value, 50 Hz
3(N)~, sinus, $48 . . .63 \mathrm{~Hz}$
= supply voltage AC: 3(N)~ 400/230 V
(N)-L1-L2-L3
$0,7 \ldots 1,15 \mathrm{U}_{\mathrm{n}}$
$\geq 1,2 \mathrm{U}_{\mathrm{n}}$
5 V
ERROR: ≤ 175 V AC
OK: > 175 V AC
OK (when returning after an error): $\geq 180 \mathrm{~V}$ AC
smooth adjustment:
ERROR: > 5 ... 80 V AC
OK: ≤ 5... 80 V AC
OK (when returning after an error): $\leq 0 . . .75 \mathrm{~V}$ AC
OK: correct sequence of phase connection to the terminals
ERROR: phase connection to terminals other than OK status
Insulation according to EN 60664-1
Insulation rated voltage
Rated surge voltage
Overvoltage category
Insulation pollution degree
Flammability class
Dielectric strength

- input - output
- contact clearance

The measuring circuit is not galvanically insulated from the relay supply circuit

RPN-1VFT-A400

monitoring relays

General data

Electrical life \quad resistive AC1	$>0,5 \times 10^{5} \quad 12 \mathrm{~A}, 250 \mathrm{VAC}$
Mechanical life (cycles)	$>3 \times 10^{7}$
Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)	90 © $\times 17,5 \times 64,6 \mathrm{~mm}$
Weight	72 g
Ambient temperature • storage (non-condensation and/or icing) • operating	$\begin{aligned} & -40 \ldots+70^{\circ} \mathrm{C} \\ & -20 \ldots+60^{\circ} \mathrm{C} \end{aligned}$
Cover protection category	IP 20 EN 60529
Relative humidity	up to 85\%
Shock resistance	15 g
Vibration resistance	0,35 mm DA $\quad 10 . . .55 \mathrm{~Hz}$
Meassuring circuit data ©	
Functions	LOST D - phase failure monitoring ASYM D - asymmetry monitoring SEQ D - phase sequence monitoring histeresis mode
Ranges of asymmetry	smooth adjustment: OFF - permanent switching off; $5 \ldots 80 \text { V AC }$
Time ranges of tripping delay	step adjustment: OFF - permanent switching off; $(1 \mathrm{~s} ; 2 \mathrm{~s} \text { (3) }) 3 \mathrm{~s} ; 4 \mathrm{~s} ; 5 \mathrm{~s} ; 6 \mathrm{~s} ; 7 \mathrm{~s} ; 8 \mathrm{~s} ; 9 \mathrm{~s}$
Base accuracy	voltage measurement: $\pm 5 \%$ (4)
Accuracy of asymmetry settings	threshold limits: $\pm 10 \%$ ©
Accuracy of delay time settings	threshold limits: $\pm 5 \%$ © ©
Values affecting the timing adjustment - temperature - supply voltage	$\begin{aligned} & \pm 0,05 \% ~ / ~ \circ \\ & \pm 0,01 \% ~ / ~ V \end{aligned}$
Recovery time	200 ms
LED indicator ©	two-colour LEDs (green/red) LOST+ASYM, SEQ: indication of supply voltage U , error, tripping delay yellow LED R - output relay status
(1) The measuring circuit is not galvanically insulated from the relay supply circuit. (2) Length with 35 mm rail catches: $98,8 \mathrm{~mm}$. (3) For initial ranges ($1 \mathrm{~s} ; 2 \mathrm{~s}$) setting accuracy is smaller than the given ones in technical parameters (significant influence of the operational relay operating time, processor start-time, and the moment of supply switching as referred to the AC supply course). (4) From a measured value in the range of $100 . . .230 \mathrm{~V}$. (6) Calculated from the final range values, for the setting direction from minimum to maximum. © LED indication - see "Additional functions", page 3.	

Dimensions

Connection diagram

Requires terminal (N) connection to the neutral wire.

Functions

LOST D - Phase failure monitoring (with delayed disconnection of contact R).

If the voltage at all phases will exceed 175 V and no error condition occurred earlier, then the operational relay R is switched on. If voltage at one of the three phases, L1, L2, L3 falls to a value of 175 V , then after applying a setpoint delay time, the R contact is switched off. The operational relay R will be switched back on when the voltage value at the given phase rises to 180 V . A rapid phase loss is treated as a phase sequence error and no delay is then applied.

ASYM D - Asymmetry monitoring (with delayed disconnection of contact R).

The operational relay R switches to the off position when the asymmetry exceeds the setpoint value (diagram: switching threshold of asymmetry error 60 V). The asymmetry caused by the return voltage of the receiver (e.g. a motor that still operates in only two phases) does not disconnect.

SEQ D - Phase sequence monitoring (without delay for disconnection of contact R).

If all the phases are connected to the terminals in the correct sequence (L1->L1, L2->L2, L3->L3) or in a consecutive sequence, then the operational relay R switches on. When the phase sequence changes, the operational relay R is immediately switched off.

Allowed connections combinations phases with terminal:

Terminal	Phase
L1 ->	L1
L2 ->	L2
L3 ->	L3
L1 ->	L2
L2 ->	L3
L3 ->	L1
L1 ->	L3
L2 ->	L1
L3 ->	L2

L1: misalignment phase 0°
L2: misalignment phase $2 \pi / 3=120^{\circ}$ L3: misalignment phase $4 \pi / 3=240^{\circ}$

L1, L2, L3 - phase supply voltages; \mathbf{R} - output state of the relay; T-delay time; t-time axis

Additional functions

LEDs: two-colour (green/red) LOST+ASYM, SEQ - are lit permanently or flashes at 500 ms period where it is lit for 50% of the time, and off for 50% of the time. Yellow R is lit permanently.

Adjustment of the set values: the values of range of asymmetry and tripping delay are read in the course of the relay's operation. The set values may be modified at any moment.

Supply: the relay may be supplied with AC voltage $48 \ldots 63 \mathrm{~Hz}$ of $161 . . .264,5 \mathrm{~V}$.

LED indication	LOST+ASYM \downarrow	SEQ Q	\mathbf{R}
green lights up all the time	power supply and asymmetry are correct	correct phase sequence	-
red lights up all the time	ERROR power supply or asymmetry	ERROR phase sequence	-
red flashes	ERROR power supply or asymmetry $\mathbf{8}$	-	-
yellow does not light up	-	-	contact R disconnected
yellow lights up all the time	-	-	contact R connected

8 Measurement of the tripping delay time (disconnection of contact R) after has occurred a phase failure or asymmetry error.

Front panel description

Mounting

Relays RPN-1VFT-A400 are designed for direct mounting on 35 mm rail mount acc. to EN 60715. Operational position - any. Connections: max. cross section of the cables: $1 \times 2,5 \mathrm{~mm}^{2}(1 \times 14 \mathrm{AWG})$, stripping length: $6,5 \mathrm{~mm}$, max. tightening moment for the terminal: $0,5 \mathrm{Nm}$.

Two catches:
easy mounting on 35 mm rail,
firm hold (top and bottom).

Mounting wires

in clamps:
universal screw
(cross-recessed or slotted head).

Ordering codes

Example of ordering codes:
RPN-1VFT-A400 monitoring relay RPN-1VFT-A400, multifunction (relay perform 3 functions), cover - modular, width $17,5 \mathrm{~mm}$, one changeover contact, contact material AgSnO_{2}, rated input voltage $=$ monitoring $3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Relpol manufacturer:

Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 6-
1423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8
```

